找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Econometrics with Machine Learning; Felix Chan,László Mátyás Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusive li

[復制鏈接]
查看: 47331|回復: 47
樓主
發(fā)表于 2025-3-21 19:43:36 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Econometrics with Machine Learning
編輯Felix Chan,László Mátyás
視頻videohttp://file.papertrans.cn/302/301474/301474.mp4
概述Presents how machine learning techniques can be applied to empirical econometric problems.Enhances and expands the econometrics toolbox in theory and in practice.Takes a multidisciplinary approach in
叢書名稱Advanced Studies in Theoretical and Applied Econometrics
圖書封面Titlebook: Econometrics with Machine Learning;  Felix Chan,László Mátyás Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusive li
描述This book helps and promotes the use of machine learning tools and techniques in econometrics and explains how machine learning can enhance and expand the econometrics toolbox in theory and in practice.?.Throughout the volume, the authors raise and answer six questions: 1) What are the similarities between existing econometric and machine learning techniques? 2) To what extent can machine learning techniques assist econometric investigation? Specifically, how robust or stable is the prediction from machine learning algorithms given the ever-changing nature of human behavior? 3) Can machine learning techniques assist in testing statistical hypotheses and identifying causal relationships in ‘big data? 4) How can existing econometric techniques be extended by incorporating machine learning concepts? 5) How can new econometric tools and approaches be elaborated on based on machine learning techniques? 6) Is it possible to develop machine learning techniques furtherand make them even more readily applicable in econometrics?.As the data structures in economic and financial data become more complex and models become more sophisticated, the book takes a multidisciplinary approach in develo
出版日期Book 2022
關(guān)鍵詞Machine Learning and causality; Linear models; Non-linear models; Econometric forecasting and predictio
版次1
doihttps://doi.org/10.1007/978-3-031-15149-1
isbn_softcover978-3-031-15151-4
isbn_ebook978-3-031-15149-1Series ISSN 1570-5811 Series E-ISSN 2214-7977
issn_series 1570-5811
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Econometrics with Machine Learning影響因子(影響力)




書目名稱Econometrics with Machine Learning影響因子(影響力)學科排名




書目名稱Econometrics with Machine Learning網(wǎng)絡(luò)公開度




書目名稱Econometrics with Machine Learning網(wǎng)絡(luò)公開度學科排名




書目名稱Econometrics with Machine Learning被引頻次




書目名稱Econometrics with Machine Learning被引頻次學科排名




書目名稱Econometrics with Machine Learning年度引用




書目名稱Econometrics with Machine Learning年度引用學科排名




書目名稱Econometrics with Machine Learning讀者反饋




書目名稱Econometrics with Machine Learning讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:55:11 | 只看該作者
Marion A. Hersh,Michael A. Johnsoniscrete outcome, problems. Overall, the chapter attempts to identify the nexus between these ML methods and conventional techniques ubiquitously used in applied econometrics. This includes a discussion of the advantages and disadvantages of each approach. Several benefits, as well as strong connecti
板凳
發(fā)表于 2025-3-22 04:15:16 | 只看該作者
Non-Coding RNA Function and Structure,. Epidemiologists have generally approached such problems using propensity score matching or inverse probability treatment weighting within a potential outcomes framework. This approach still focuses on the estimation of a parameter in a structural model. A more recent method, known as doubly robust
地板
發(fā)表于 2025-3-22 05:23:47 | 只看該作者
5#
發(fā)表于 2025-3-22 12:24:57 | 只看該作者
,Log-Arithmetic, with Single and?Dual Base,y projecting the unconstrained index into the null space of this operator or by directly finding the closest solution of the functional equation into this null space.We also acknowledge that policymakers may incur costs when moving away from the status quo. . is thus introduced as an intermediate se
6#
發(fā)表于 2025-3-22 15:13:38 | 只看該作者
The Use of Machine Learning in Treatment Effect Estimation,
7#
發(fā)表于 2025-3-22 17:41:24 | 只看該作者
1570-5811 ven more readily applicable in econometrics?.As the data structures in economic and financial data become more complex and models become more sophisticated, the book takes a multidisciplinary approach in develo978-3-031-15151-4978-3-031-15149-1Series ISSN 1570-5811 Series E-ISSN 2214-7977
8#
發(fā)表于 2025-3-22 22:33:57 | 只看該作者
9#
發(fā)表于 2025-3-23 04:05:22 | 只看該作者
10#
發(fā)表于 2025-3-23 06:14:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 22:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
固原市| 扶风县| 梁平县| 弥渡县| 呼图壁县| 温宿县| 鹰潭市| 和顺县| 沁源县| 诏安县| 常熟市| 二连浩特市| 马边| 山东| 石林| 宁明县| 苏尼特右旗| 湖南省| 阳春市| 兴城市| 桓仁| 五指山市| 永康市| 沿河| 黎川县| 泾川县| 会同县| 石楼县| 道孚县| 怀宁县| 大理市| 景宁| 大同市| 石门县| 忻城县| 涪陵区| 肃南| 马公市| 乳源| 安龙县| 石柱|