找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Ebene Isotrope Geometrie; Hans Sachs Book 1987 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig 1987 Beweis.Dualit?t.Geometrie.

[復(fù)制鏈接]
查看: 52715|回復(fù): 43
樓主
發(fā)表于 2025-3-21 17:56:41 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Ebene Isotrope Geometrie
編輯Hans Sachs
視頻videohttp://file.papertrans.cn/302/301053/301053.mp4
圖書封面Titlebook: Ebene Isotrope Geometrie;  Hans Sachs Book 1987 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig 1987 Beweis.Dualit?t.Geometrie.
出版日期Book 1987
關(guān)鍵詞Beweis; Dualit?t; Geometrie; Invariante; Mannigfaltigkeit
版次1
doihttps://doi.org/10.1007/978-3-322-84150-6
isbn_softcover978-3-528-08454-7
isbn_ebook978-3-322-84150-6
copyrightFriedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig 1987
The information of publication is updating

書目名稱Ebene Isotrope Geometrie影響因子(影響力)




書目名稱Ebene Isotrope Geometrie影響因子(影響力)學(xué)科排名




書目名稱Ebene Isotrope Geometrie網(wǎng)絡(luò)公開度




書目名稱Ebene Isotrope Geometrie網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Ebene Isotrope Geometrie被引頻次




書目名稱Ebene Isotrope Geometrie被引頻次學(xué)科排名




書目名稱Ebene Isotrope Geometrie年度引用




書目名稱Ebene Isotrope Geometrie年度引用學(xué)科排名




書目名稱Ebene Isotrope Geometrie讀者反饋




書目名稱Ebene Isotrope Geometrie讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:26:23 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:37:49 | 只看該作者
,Die Kurventheorie der isotropen Ebene bezüglich der Gruppe ?3,nnene Kurventheorie ist dann das isotrope Analogon zur klassischen euklidischen Differentialgeometrie der ebenen Kurven, die in [104] nachgelesen werden kann. Wegen I. ?A. werden wir einige allgemeine Betrachtungen über Kurven in A. voranstellen, wobei wir uns in der Terminologie an [15] halten.
地板
發(fā)表于 2025-3-22 06:43:15 | 只看該作者
,Verallgemeinerte komplexe Zahlen; euklidische, pseudoeuklidische und isotrope Geometrie; M?biusgeomn [29]. Wir studieren diese Zahlen i.f. im Rahmen der ., wobei wir gleichzeitig die Zusammenh?nge der ebenen . und . Geometrie mit der . aufzeigen. Wir folgen hierbei den vorzüglichen Darstellungen von I.M. JAGLOM ([33], [34]), B.A. ROSENFELD [82] und N.D. PETZKO [72].
5#
發(fā)表于 2025-3-22 12:38:25 | 只看該作者
Advances in Autonomous Mini RobotsLiteratur verweisen wir auf die Arbeiten von L. BERWALD [5], V.R. BOLOTIN [12], D. FOG [20], N. KUIPER [47], K. STRUBECKER [99], und die systematischen Abhandlungen von N. MAKAROWA [52]–[55]. Der Zusammenhang der ebenen isotropen Geometrie mit den 9 Typen ebener Cayley-Kleinscher Geometrien wird in [57] studiert.
6#
發(fā)表于 2025-3-22 14:23:42 | 只看該作者
J. P?íhoda,J. Holas,J. Kratochvílungsprinzip konsequent benützen. In SATZ 3.10 wurde für Kreise der isotropen Ebene bereits ein Potenzbegriff eingeführt; wir werden jetzt einen dazu . — n?mlich die isotrope Potenz eines Kreises in einer Geraden — einführen.
7#
發(fā)表于 2025-3-22 20:42:05 | 只看該作者
Advances in Bioelectrochemistry Volume 1nnene Kurventheorie ist dann das isotrope Analogon zur klassischen euklidischen Differentialgeometrie der ebenen Kurven, die in [104] nachgelesen werden kann. Wegen I. ?A. werden wir einige allgemeine Betrachtungen über Kurven in A. voranstellen, wobei wir uns in der Terminologie an [15] halten.
8#
發(fā)表于 2025-3-22 22:41:03 | 只看該作者
https://doi.org/10.1007/978-3-030-95270-9n [29]. Wir studieren diese Zahlen i.f. im Rahmen der ., wobei wir gleichzeitig die Zusammenh?nge der ebenen . und . Geometrie mit der . aufzeigen. Wir folgen hierbei den vorzüglichen Darstellungen von I.M. JAGLOM ([33], [34]), B.A. ROSENFELD [82] und N.D. PETZKO [72].
9#
發(fā)表于 2025-3-23 01:28:59 | 只看該作者
10#
發(fā)表于 2025-3-23 05:35:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 03:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
河南省| 康保县| 广平县| 普陀区| 阿克苏市| 洞头县| 滦南县| 裕民县| 辽阳市| 西峡县| 会泽县| 金平| 黑山县| 公安县| 湘潭市| 莎车县| 金秀| 元谋县| 四川省| 陆丰市| 伊川县| 昔阳县| 东丰县| 昌江| 宜昌市| 鄯善县| 巴马| 随州市| 交城县| 兴义市| 胶州市| 福泉市| 卢氏县| 剑川县| 中宁县| 通道| 公安县| 瑞金市| 黔江区| 平利县| 嵊泗县|