找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Ebene Geometrie; Max Koecher,Aloys Krieg Textbook 20002nd edition Springer-Verlag Berlin Heidelberg 2000 Fachdidaktik Geometrie.Geometrie.

[復(fù)制鏈接]
樓主: fasten
21#
發(fā)表于 2025-3-25 06:36:14 | 只看該作者
Analytische Geometrie in der euklidischen Ebene,In diesem Kapitel sollen die grundlegenden S?tze der ebenen euklidischen Geometrie dargestellt werden. Von den in II, §1 bereitgestellten Bezeichnungen und Hilfsmitteln wird dabei intensiv Gebrauch gemacht.
22#
發(fā)表于 2025-3-25 10:01:45 | 只看該作者
23#
發(fā)表于 2025-3-25 14:32:30 | 只看該作者
Affine Geometrie in Koordinatenebenen,n werden. In einer solchen Koordinatenebene sind in kanonischer Weise die Geraden als Mengen . + . mit ., . ∈ .., . ≠ 0, erkl?rt. Aussagen über Punkte und deren Verbindungsgeraden sowie über Geraden und deren Schnittpunkte sind Teile einer . oder der so genannten ..
24#
發(fā)表于 2025-3-25 18:48:36 | 只看該作者
25#
發(fā)表于 2025-3-25 23:07:19 | 只看該作者
Prolog,s Ende des 19. Jahrhunderts als Muster und Vorbild eines Lehrbuches. Nach .s Hand-Lexikon von 1883 wurde er auch ?Vater der Geometrie“ genannt. Au?er vagen Lebensdaten ist über . selbst nichts weiter bekannt. Man vergleiche dazu die .-Biographie von P. . (1987).
26#
發(fā)表于 2025-3-26 03:00:48 | 只看該作者
27#
發(fā)表于 2025-3-26 05:32:58 | 只看該作者
https://doi.org/10.1007/978-94-011-4469-8n werden. In einer solchen Koordinatenebene sind in kanonischer Weise die Geraden als Mengen . + . mit ., . ∈ .., . ≠ 0, erkl?rt. Aussagen über Punkte und deren Verbindungsgeraden sowie über Geraden und deren Schnittpunkte sind Teile einer . oder der so genannten ..
28#
發(fā)表于 2025-3-26 09:18:40 | 只看該作者
29#
發(fā)表于 2025-3-26 15:08:49 | 只看該作者
30#
發(fā)表于 2025-3-26 18:24:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 16:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
博白县| 门头沟区| 互助| 新干县| 泗洪县| 和田市| 双鸭山市| 肥东县| 乌拉特前旗| 六枝特区| 江西省| 北海市| 白玉县| 北辰区| 临西县| 安丘市| 晴隆县| 梁山县| 寿宁县| 休宁县| 阿鲁科尔沁旗| 中牟县| 津市市| 牡丹江市| 松桃| 开平市| 手游| 鄂州市| 恭城| 德格县| 河南省| 华阴市| 鄄城县| 临夏市| 公主岭市| 阳春市| 孝义市| 台州市| 许昌市| 洪雅县| 班戈县|