找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: EUROSAM 84; International Sympos John Fitch Conference proceedings 1984 Springer-Verlag Berlin Heidelberg 1984 Computeralgebra.algebra.algo

[復(fù)制鏈接]
樓主: 筆記
21#
發(fā)表于 2025-3-25 07:01:05 | 只看該作者
22#
發(fā)表于 2025-3-25 10:14:48 | 只看該作者
23#
發(fā)表于 2025-3-25 13:51:15 | 只看該作者
braic number field. Mainly, we show how to write the equation of the Kummer surface of the Jacobian of a curve of genus 2 in terms of the equation of the curve. This allows one to calculate a bound on the torsion which seems better than the bound derived from Riemann-Weil theory. Finally, we discuss
24#
發(fā)表于 2025-3-25 16:45:29 | 只看該作者
Geschichte der Verhaltenstherapie, described. This is used to investigate the practicability of writing systems in a no-side effect, no property list, pure style. In addition, using the experimental LISP system in Bath that allows for full environment closures, ways have been discovered in which eager (applicative) evaluation and la
25#
發(fā)表于 2025-3-25 23:53:13 | 只看該作者
Strategische Informations-system-Planungminates over the field K), constructs a so-called Gr?bner-basis for the ideal. The importance of Gr?bner-bases for effectively carrying out a large number of construction and decision problems in polynomial ideal theory has been investigated in /Bu65/, /Wi78/, /WB81/, /Bu83b/. For the case of two va
26#
發(fā)表于 2025-3-26 03:38:49 | 只看該作者
Konzeptionelle Grundlagen der Arbeit,ch of these algorithms takes an ideal specified by a finite set of polynomials as its input; the result is another finite basis of the ideal which can be used to simplify polynomials such that every polynomial in the ideal simplifies to 0 and every polynomial in the polynomial ring simplifies to a u
27#
發(fā)表于 2025-3-26 04:22:02 | 只看該作者
EUROSAM 84978-3-540-38893-7Series ISSN 0302-9743 Series E-ISSN 1611-3349
28#
發(fā)表于 2025-3-26 12:30:19 | 只看該作者
29#
發(fā)表于 2025-3-26 15:20:39 | 只看該作者
30#
發(fā)表于 2025-3-26 19:59:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 09:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
潞西市| 汶上县| 青铜峡市| 镇雄县| 浙江省| 元阳县| 镇宁| 莎车县| 韶关市| 镇赉县| 溧阳市| 朝阳市| 澜沧| 宁化县| 两当县| 米易县| 连平县| 长子县| 美姑县| 恭城| 南平市| 祥云县| 甘谷县| 澜沧| 宁德市| 金川县| 西青区| 淅川县| 宜宾市| 庆阳市| 报价| 德化县| 澄江县| 大新县| 仪陇县| 正阳县| 望城县| 邵东县| 沈丘县| 湖北省| 无锡市|