找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: EUROSAM 84; International Sympos John Fitch Conference proceedings 1984 Springer-Verlag Berlin Heidelberg 1984 Computeralgebra.algebra.algo

[復(fù)制鏈接]
樓主: 筆記
21#
發(fā)表于 2025-3-25 07:01:05 | 只看該作者
22#
發(fā)表于 2025-3-25 10:14:48 | 只看該作者
23#
發(fā)表于 2025-3-25 13:51:15 | 只看該作者
braic number field. Mainly, we show how to write the equation of the Kummer surface of the Jacobian of a curve of genus 2 in terms of the equation of the curve. This allows one to calculate a bound on the torsion which seems better than the bound derived from Riemann-Weil theory. Finally, we discuss
24#
發(fā)表于 2025-3-25 16:45:29 | 只看該作者
Geschichte der Verhaltenstherapie, described. This is used to investigate the practicability of writing systems in a no-side effect, no property list, pure style. In addition, using the experimental LISP system in Bath that allows for full environment closures, ways have been discovered in which eager (applicative) evaluation and la
25#
發(fā)表于 2025-3-25 23:53:13 | 只看該作者
Strategische Informations-system-Planungminates over the field K), constructs a so-called Gr?bner-basis for the ideal. The importance of Gr?bner-bases for effectively carrying out a large number of construction and decision problems in polynomial ideal theory has been investigated in /Bu65/, /Wi78/, /WB81/, /Bu83b/. For the case of two va
26#
發(fā)表于 2025-3-26 03:38:49 | 只看該作者
Konzeptionelle Grundlagen der Arbeit,ch of these algorithms takes an ideal specified by a finite set of polynomials as its input; the result is another finite basis of the ideal which can be used to simplify polynomials such that every polynomial in the ideal simplifies to 0 and every polynomial in the polynomial ring simplifies to a u
27#
發(fā)表于 2025-3-26 04:22:02 | 只看該作者
EUROSAM 84978-3-540-38893-7Series ISSN 0302-9743 Series E-ISSN 1611-3349
28#
發(fā)表于 2025-3-26 12:30:19 | 只看該作者
29#
發(fā)表于 2025-3-26 15:20:39 | 只看該作者
30#
發(fā)表于 2025-3-26 19:59:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 09:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
婺源县| 乌鲁木齐市| 祁阳县| 西充县| 措美县| 合山市| 错那县| 施秉县| 山阴县| 日土县| 当雄县| 营山县| 将乐县| 东乌珠穆沁旗| 泰州市| 车致| 渝北区| 巴东县| 五寨县| 米易县| 融水| 县级市| 定南县| 手游| 临颍县| 温宿县| 东阳市| 招远市| 福泉市| 临安市| 咸宁市| 东莞市| 灯塔市| 横山县| 靖州| 布尔津县| 屏边| 什邡市| 黔江区| 长春市| 临沭县|