找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: EUROCODE ‘90; International Sympos Gérard Cohen,Pascale Charpin Conference proceedings 1991 Springer-Verlag Berlin Heidelberg 1991 Algebrai

[復(fù)制鏈接]
樓主: advocate
11#
發(fā)表于 2025-3-23 20:08:35 | 只看該作者
Aufl?sung linearer GleichungssystemeFollowing R. Pellikaan who gave, in 1989, an algorithm which decodes geometric codes up to . errors where d* is the designed distance of the code, we describe an effective decoding procedure for some geometric codes on the Klein quartic.
12#
發(fā)表于 2025-3-23 22:57:24 | 只看該作者
13#
發(fā)表于 2025-3-24 06:17:31 | 只看該作者
A direct proof for the automorphism group of reed solomon codes,We introduce a special basis for the description of the primitive extended cyclic codes, considered as subspaces of the modular algebra A=GF(p.)[GF(p.)]. Using properties of this basis, we determine the automorphism group of some extended cyclic codes, among the extended Reed Solomon codes.
14#
發(fā)表于 2025-3-24 09:44:06 | 只看該作者
Covering radius of RM(1,9) in RM(3,9),We give new properties about Fourier coefficients and we prove that the distance of the first order Reed-Muller code of length 512 to any cubic is at most 240.
15#
發(fā)表于 2025-3-24 12:29:13 | 只看該作者
16#
發(fā)表于 2025-3-24 17:26:38 | 只看該作者
17#
發(fā)表于 2025-3-24 20:15:57 | 只看該作者
Decoding of codes on hyperelliptic curves,In 1989, R. Pellikaan gave an algorithm which decodes geometric codes up to .-errors, where .* is the designed distance of the code. Unfortunately this algorithm is not completely effective. I present facts about the jacobian of a hyperelliptic curve which permits in some cases to perform the algorithm.
18#
發(fā)表于 2025-3-24 23:41:46 | 只看該作者
Decoding of codes on the klein quartic,Following R. Pellikaan who gave, in 1989, an algorithm which decodes geometric codes up to . errors where d* is the designed distance of the code, we describe an effective decoding procedure for some geometric codes on the Klein quartic.
19#
發(fā)表于 2025-3-25 07:10:30 | 只看該作者
Asymptotically good families of geometric goppa codes and the gilbert-varshamov bound,This note presents a generalization of the fact that most of the classical Goppa codes lie arbitrarily close to the Gilbert-Varshamov bound (cf. [2, p. 229]).
20#
發(fā)表于 2025-3-25 11:16:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 17:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吉安县| 祁连县| 临湘市| 永川市| 永登县| 监利县| 视频| 许昌县| 景谷| 通河县| 乐平市| 华安县| 吉首市| 资中县| 天气| 田阳县| 绩溪县| 武义县| 沈阳市| 桓台县| 巴林右旗| 隆林| 邛崃市| 三明市| 罗平县| 丹凤县| 龙江县| 云安县| 阳泉市| 东兰县| 新竹县| 剑阁县| 阿瓦提县| 弥勒县| 日土县| 北安市| 方城县| 太康县| 来凤县| 深泽县| 乐清市|