找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ETO Multicenter Molecular Integrals; Proceedings of the F Charles A. Weatherford,Herbert W. Jones Conference proceedings 1982 D. Reidel Pub

[復(fù)制鏈接]
樓主: 關(guān)稅
21#
發(fā)表于 2025-3-25 06:12:39 | 只看該作者
22#
發(fā)表于 2025-3-25 09:53:12 | 只看該作者
23#
發(fā)表于 2025-3-25 13:37:13 | 只看該作者
24#
發(fā)表于 2025-3-25 16:35:34 | 只看該作者
The Philosophy and Strategy for STO Integral Evaluation Using the C-Matrix Algebraic Single-Center as into appropriate Taylor series. The policy of carrying out all algebraic manipulations by computer and using different formulas for different ranges of parameters re-establishes the use of formulas for integral evaluation after the abandonment of this approach many years ago.
25#
發(fā)表于 2025-3-25 20:23:14 | 只看該作者
26#
發(fā)表于 2025-3-26 03:08:17 | 只看該作者
Slater.. These functions may then properly be called orthonormal Slaters (ONSs). The radial parts may be constructed, as Slater points out, by an analytical Gram-Schmidt process from the minimum n-quantum number, normalized radial Slaters.
27#
發(fā)表于 2025-3-26 06:42:25 | 只看該作者
28#
發(fā)表于 2025-3-26 12:08:24 | 只看該作者
29#
發(fā)表于 2025-3-26 16:00:31 | 只看該作者
lude the power series expansions for small arguments, and continued-fraction or asymptotic expansions for large arguments.. None of these methods are fast for a large intermediate argument range, and the integrals are often evaluated by finite numerically fitted Chebyshev. or rational-fraction. expansions.
30#
發(fā)表于 2025-3-26 20:42:45 | 只看該作者
integration variables are to be defined with respect to one common center. Therefore, it is necessary to express all those exponential-type functions (ETF’s) and operators, which occur in the integrand, with respect to the chosen fixed reference system of integration. This causes serious problems b
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 13:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
扶风县| 隆回县| 宜州市| 罗源县| 嘉鱼县| 牡丹江市| 上犹县| 凤凰县| 临城县| 民乐县| 汉阴县| 方山县| 分宜县| 大英县| 南岸区| 尉氏县| 连州市| 平利县| 城步| 吕梁市| 来安县| 芦溪县| 深州市| 永康市| 海丰县| 青冈县| 黑水县| 廊坊市| 河间市| 清流县| 靖远县| 信宜市| 封开县| 盖州市| 哈密市| 沂南县| 临江市| 玉门市| 项城市| 基隆市| 鄄城县|