找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ETO Multicenter Molecular Integrals; Proceedings of the F Charles A. Weatherford,Herbert W. Jones Conference proceedings 1982 D. Reidel Pub

[復制鏈接]
樓主: 關稅
11#
發(fā)表于 2025-3-23 11:56:33 | 只看該作者
12#
發(fā)表于 2025-3-23 14:21:10 | 只看該作者
On Auxiliary Functions in Molecular Integrals,resented. The review is preceded by an outline of a few concepts from graph theory -- the subject of current intensive interest of the author. Graphs already play useful role in molecular calculations, even in some problems involving molecular integrals and graph theory deserves a better exposure. I
13#
發(fā)表于 2025-3-23 20:28:13 | 只看該作者
14#
發(fā)表于 2025-3-23 22:52:52 | 只看該作者
Pluralismustheoretiker und ihre Kritikere solemn direction, the contribution suggests that overlap integrals play a role of auxiliary functions and some hope is expressed that additional molecular integrals will be expressed in terms of general overlap integrals or as some function of overlap integrals.
15#
發(fā)表于 2025-3-24 03:04:10 | 只看該作者
16#
發(fā)表于 2025-3-24 07:35:18 | 只看該作者
17#
發(fā)表于 2025-3-24 13:41:16 | 只看該作者
18#
發(fā)表于 2025-3-24 16:36:01 | 只看該作者
Experience Using Spherical Harmonic Expansions to Evaluate Molecular Integrals,metrical parameters of the three centers (2 inter-nuclear distances and one angle) in terms of an infinite series of Legendre polynomials of the cosine of the angle, then the formula is equivalent to the one obtained by using spherical harmonic expansions about one nucleus.
19#
發(fā)表于 2025-3-24 21:03:28 | 只看該作者
Translation of Angular Momentum Eigenfunctions Using Numerical Spherical Bessel Transforms,be eliminated by removing the cusp using a counter term for which analytic results are known. A brief discussion of the possibility of applying the logarithmic coordinate spherical Bessel transform method to the multicenter integral problem is included.
20#
發(fā)表于 2025-3-25 02:05:53 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 19:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
乌拉特后旗| 图木舒克市| 黔西| 景德镇市| 伊宁县| 永善县| 奎屯市| 聂荣县| 上饶市| 葫芦岛市| 泽普县| 锦州市| 城固县| 鄂托克旗| 莎车县| 格尔木市| 西藏| 阿鲁科尔沁旗| 宁乡县| 新晃| 淮阳县| 德庆县| 莆田市| 华宁县| 德惠市| 高州市| 富蕴县| 蓬安县| 神木县| 鲜城| 志丹县| 庆阳市| 都江堰市| 饶平县| 富阳市| 池州市| 固安县| 巴马| 邳州市| 盐边县| 普兰店市|