找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: EMG Signals Characterization in Three States of Contraction by Fuzzy Network and Feature Extraction; Bita Mokhlesabadifarahani,Vinit Kumar

[復(fù)制鏈接]
查看: 26975|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:21:44 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱EMG Signals Characterization in Three States of Contraction by Fuzzy Network and Feature Extraction
編輯Bita Mokhlesabadifarahani,Vinit Kumar Gunjan
視頻videohttp://file.papertrans.cn/301/300430/300430.mp4
概述Includes supplementary material:
叢書名稱SpringerBriefs in Applied Sciences and Technology
圖書封面Titlebook: EMG Signals Characterization in Three States of Contraction by Fuzzy Network and Feature Extraction;  Bita Mokhlesabadifarahani,Vinit Kumar
描述Neuro-muscular and musculoskeletal disorders and injuries highly affect the life style and the motion abilities of an individual. This brief highlights a systematic method for detection of the level of muscle power declining in musculoskeletal and Neuro-muscular disorders. The neuro-fuzzy system is trained with 70 percent of the recorded Electromyography (EMG) cut off window and then used for classification and modeling purposes. The neuro-fuzzy classifier is validated in comparison to some other well-known classifiers in classification of the recorded EMG signals with the three states of contractions corresponding to the extracted features. Different structures of the neuro-fuzzy classifier are also comparatively analyzed to find the optimum structure of the classifier used.
出版日期Book 2015
關(guān)鍵詞Electromyography (EMG); Feature Extraction; Fuzzy Network; Musculoskeletal Disorders; Neuro-fuzzy Classi
版次1
doihttps://doi.org/10.1007/978-981-287-320-0
isbn_softcover978-981-287-319-4
isbn_ebook978-981-287-320-0Series ISSN 2191-530X Series E-ISSN 2191-5318
issn_series 2191-530X
copyrightThe Author(s) 2015
The information of publication is updating

書目名稱EMG Signals Characterization in Three States of Contraction by Fuzzy Network and Feature Extraction影響因子(影響力)




書目名稱EMG Signals Characterization in Three States of Contraction by Fuzzy Network and Feature Extraction影響因子(影響力)學(xué)科排名




書目名稱EMG Signals Characterization in Three States of Contraction by Fuzzy Network and Feature Extraction網(wǎng)絡(luò)公開度




書目名稱EMG Signals Characterization in Three States of Contraction by Fuzzy Network and Feature Extraction網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱EMG Signals Characterization in Three States of Contraction by Fuzzy Network and Feature Extraction被引頻次




書目名稱EMG Signals Characterization in Three States of Contraction by Fuzzy Network and Feature Extraction被引頻次學(xué)科排名




書目名稱EMG Signals Characterization in Three States of Contraction by Fuzzy Network and Feature Extraction年度引用




書目名稱EMG Signals Characterization in Three States of Contraction by Fuzzy Network and Feature Extraction年度引用學(xué)科排名




書目名稱EMG Signals Characterization in Three States of Contraction by Fuzzy Network and Feature Extraction讀者反饋




書目名稱EMG Signals Characterization in Three States of Contraction by Fuzzy Network and Feature Extraction讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:12:26 | 只看該作者
EMG Signals Characterization in Three States of Contraction by Fuzzy Network and Feature Extraction
板凳
發(fā)表于 2025-3-22 03:04:28 | 只看該作者
Book 2015s a systematic method for detection of the level of muscle power declining in musculoskeletal and Neuro-muscular disorders. The neuro-fuzzy system is trained with 70 percent of the recorded Electromyography (EMG) cut off window and then used for classification and modeling purposes. The neuro-fuzzy
地板
發(fā)表于 2025-3-22 05:50:00 | 只看該作者
5#
發(fā)表于 2025-3-22 11:49:01 | 只看該作者
Book 2015classifier is validated in comparison to some other well-known classifiers in classification of the recorded EMG signals with the three states of contractions corresponding to the extracted features. Different structures of the neuro-fuzzy classifier are also comparatively analyzed to find the optimum structure of the classifier used.
6#
發(fā)表于 2025-3-22 16:10:53 | 只看該作者
2191-530X d EMG signals with the three states of contractions corresponding to the extracted features. Different structures of the neuro-fuzzy classifier are also comparatively analyzed to find the optimum structure of the classifier used.978-981-287-319-4978-981-287-320-0Series ISSN 2191-530X Series E-ISSN 2191-5318
7#
發(fā)表于 2025-3-22 19:34:34 | 只看該作者
8#
發(fā)表于 2025-3-23 00:56:30 | 只看該作者
9#
發(fā)表于 2025-3-23 04:37:30 | 只看該作者
Bita Mokhlesabadifarahani,Vinit Kumar GunjanIncludes supplementary material:
10#
發(fā)表于 2025-3-23 06:14:06 | 只看該作者
SpringerBriefs in Applied Sciences and Technologyhttp://image.papertrans.cn/e/image/300430.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 20:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
肃北| 靖州| 稻城县| 潜江市| 新和县| 南康市| 安多县| 中山市| 钟山县| 平原县| 罗城| 蒲城县| 永济市| 锡林浩特市| 洛浦县| 东方市| 静乐县| 三河市| 溆浦县| 永清县| 青岛市| 烟台市| 萝北县| 昭觉县| 民乐县| 历史| 霞浦县| 海口市| 成安县| 长治县| 镶黄旗| 商都县| 开远市| 西林县| 罗甸县| 延边| 西充县| 房产| 甘谷县| 茶陵县| 濮阳县|