找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

1234567
返回列表
打印 上一主題 下一主題

Titlebook: E-Commerce and Web Technologies; 5th International Co Kurt Bauknecht,Martin Bichler,Birgit Pr?ll Conference proceedings 2004 Springer-Verla

[復(fù)制鏈接]
樓主: Stimulant
61#
發(fā)表于 2025-4-1 02:15:04 | 只看該作者
62#
發(fā)表于 2025-4-1 09:25:36 | 只看該作者
Interaction Trust Evaluation in Decentralized Environmentsr peers. This paper first presents a probabilistic approach for evaluating the interaction trust of unfamiliar peers according to their interaction history. In addition, after an interaction, peers can evaluate each other and modify the trust status. Based on it, this paper presents an approach for trust value modification after interactions.
63#
發(fā)表于 2025-4-1 10:30:29 | 只看該作者
64#
發(fā)表于 2025-4-1 15:17:02 | 只看該作者
Using Attributes to Improve Prediction Quality in Collaborative Filteringent the MovieLens dataset of the GroupLens Research Center has been used. The results on various experiments using several neighbor selection methods which are quite popular techniques for recommender systems show that the recommender systems using the attributes provide better prediction qualities
65#
發(fā)表于 2025-4-1 21:49:15 | 只看該作者
https://doi.org/10.1007/978-981-16-5344-5ent the MovieLens dataset of the GroupLens Research Center has been used. The results on various experiments using several neighbor selection methods which are quite popular techniques for recommender systems show that the recommender systems using the attributes provide better prediction qualities
66#
發(fā)表于 2025-4-2 00:03:41 | 只看該作者
Conference proceedings 2004he program committee - lected 37 papers for presentationand publication, a task which was not easy due to the high quality of the submitted papers. We would like to express our thanks to our colleagues who helped with putting together the technical program: the program committee members and external
67#
發(fā)表于 2025-4-2 06:04:12 | 只看該作者
68#
發(fā)表于 2025-4-2 07:35:25 | 只看該作者
Using Association Analysis of Web Data in Recommender Systemstions is to provide users with instruments for personalized selective retrieval of web information. In this paper, a procedure for making personalized recommendations is proposed. The method is based on building a predictive model from an association model of Web data. It uses a set of association r
1234567
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 12:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宜都市| 镇平县| 东明县| 昭通市| 黑龙江省| 岢岚县| 隆昌县| 蕲春县| 蚌埠市| 芦溪县| 青阳县| 兴隆县| 曲沃县| 商都县| 马关县| 保康县| 田阳县| 新民市| 双桥区| 凤冈县| 京山县| 东丽区| 成武县| 确山县| 沁阳市| 南和县| 凤凰县| 博客| 兰溪市| 甘泉县| 洪湖市| 峡江县| 密山市| 广饶县| 天等县| 西乌珠穆沁旗| 大余县| 玉山县| 毕节市| 沈阳市| 丽水市|