找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

1234567
返回列表
打印 上一主題 下一主題

Titlebook: E-Commerce and Web Technologies; 5th International Co Kurt Bauknecht,Martin Bichler,Birgit Pr?ll Conference proceedings 2004 Springer-Verla

[復(fù)制鏈接]
樓主: Stimulant
61#
發(fā)表于 2025-4-1 02:15:04 | 只看該作者
62#
發(fā)表于 2025-4-1 09:25:36 | 只看該作者
Interaction Trust Evaluation in Decentralized Environmentsr peers. This paper first presents a probabilistic approach for evaluating the interaction trust of unfamiliar peers according to their interaction history. In addition, after an interaction, peers can evaluate each other and modify the trust status. Based on it, this paper presents an approach for trust value modification after interactions.
63#
發(fā)表于 2025-4-1 10:30:29 | 只看該作者
64#
發(fā)表于 2025-4-1 15:17:02 | 只看該作者
Using Attributes to Improve Prediction Quality in Collaborative Filteringent the MovieLens dataset of the GroupLens Research Center has been used. The results on various experiments using several neighbor selection methods which are quite popular techniques for recommender systems show that the recommender systems using the attributes provide better prediction qualities
65#
發(fā)表于 2025-4-1 21:49:15 | 只看該作者
https://doi.org/10.1007/978-981-16-5344-5ent the MovieLens dataset of the GroupLens Research Center has been used. The results on various experiments using several neighbor selection methods which are quite popular techniques for recommender systems show that the recommender systems using the attributes provide better prediction qualities
66#
發(fā)表于 2025-4-2 00:03:41 | 只看該作者
Conference proceedings 2004he program committee - lected 37 papers for presentationand publication, a task which was not easy due to the high quality of the submitted papers. We would like to express our thanks to our colleagues who helped with putting together the technical program: the program committee members and external
67#
發(fā)表于 2025-4-2 06:04:12 | 只看該作者
68#
發(fā)表于 2025-4-2 07:35:25 | 只看該作者
Using Association Analysis of Web Data in Recommender Systemstions is to provide users with instruments for personalized selective retrieval of web information. In this paper, a procedure for making personalized recommendations is proposed. The method is based on building a predictive model from an association model of Web data. It uses a set of association r
1234567
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 12:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江阴市| 师宗县| 峨边| 博兴县| 揭东县| 澜沧| 南丰县| 成武县| 师宗县| 墨玉县| 吴桥县| 龙岩市| 浦城县| 瓦房店市| 平定县| 景谷| 神木县| 彭州市| 托克逊县| 中卫市| 巍山| 英德市| 南乐县| 锦州市| 长治市| 岑巩县| 荆门市| 苏州市| 威远县| 朔州市| 西畴县| 哈尔滨市| 游戏| 珲春市| 前郭尔| 邹城市| 唐海县| 莎车县| 湖州市| 信阳市| 河源市|