找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: E-Commerce and Web Technologies; 5th International Co Kurt Bauknecht,Martin Bichler,Birgit Pr?ll Conference proceedings 2004 Springer-Verla

[復制鏈接]
樓主: Stimulant
61#
發(fā)表于 2025-4-1 02:15:04 | 只看該作者
62#
發(fā)表于 2025-4-1 09:25:36 | 只看該作者
Interaction Trust Evaluation in Decentralized Environmentsr peers. This paper first presents a probabilistic approach for evaluating the interaction trust of unfamiliar peers according to their interaction history. In addition, after an interaction, peers can evaluate each other and modify the trust status. Based on it, this paper presents an approach for trust value modification after interactions.
63#
發(fā)表于 2025-4-1 10:30:29 | 只看該作者
64#
發(fā)表于 2025-4-1 15:17:02 | 只看該作者
Using Attributes to Improve Prediction Quality in Collaborative Filteringent the MovieLens dataset of the GroupLens Research Center has been used. The results on various experiments using several neighbor selection methods which are quite popular techniques for recommender systems show that the recommender systems using the attributes provide better prediction qualities
65#
發(fā)表于 2025-4-1 21:49:15 | 只看該作者
https://doi.org/10.1007/978-981-16-5344-5ent the MovieLens dataset of the GroupLens Research Center has been used. The results on various experiments using several neighbor selection methods which are quite popular techniques for recommender systems show that the recommender systems using the attributes provide better prediction qualities
66#
發(fā)表于 2025-4-2 00:03:41 | 只看該作者
Conference proceedings 2004he program committee - lected 37 papers for presentationand publication, a task which was not easy due to the high quality of the submitted papers. We would like to express our thanks to our colleagues who helped with putting together the technical program: the program committee members and external
67#
發(fā)表于 2025-4-2 06:04:12 | 只看該作者
68#
發(fā)表于 2025-4-2 07:35:25 | 只看該作者
Using Association Analysis of Web Data in Recommender Systemstions is to provide users with instruments for personalized selective retrieval of web information. In this paper, a procedure for making personalized recommendations is proposed. The method is based on building a predictive model from an association model of Web data. It uses a set of association r
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-28 17:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
利川市| 达拉特旗| 农安县| 厦门市| 卢氏县| 林周县| 十堰市| 仙居县| 五华县| 衡阳县| 卢氏县| 宜春市| 丰宁| 油尖旺区| 铜川市| 叙永县| 威海市| 张家港市| 沙雅县| 吉木萨尔县| 浪卡子县| 灵武市| 都江堰市| 嘉荫县| 舟曲县| 错那县| 阿拉善左旗| 娱乐| 武隆县| 武邑县| 青田县| 丽江市| 青河县| 平和县| 陆川县| 商丘市| 三原县| 瑞丽市| 徐闻县| 太和县| 浦东新区|