找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Document Analysis and Recognition - ICDAR 2024; 18th International C Elisa H. Barney Smith,Marcus Liwicki,Liangrui Peng Conference proceedi

[復(fù)制鏈接]
樓主: Coenzyme
21#
發(fā)表于 2025-3-25 05:42:23 | 只看該作者
Conference proceedings 2024ndwriting recognition; document analysis systems; document classification; indexing and retrieval of documents; document synthesis; extracting document semantics; NLP for document understanding; office automation; graphics recognition; human document interaction; document representation modeling and much more...?.
22#
發(fā)表于 2025-3-25 08:28:28 | 只看該作者
0302-9743 ng document semantics; NLP for document understanding; office automation; graphics recognition; human document interaction; document representation modeling and much more...?.978-3-031-70532-8978-3-031-70533-5Series ISSN 0302-9743 Series E-ISSN 1611-3349
23#
發(fā)表于 2025-3-25 14:14:31 | 只看該作者
https://doi.org/10.1007/978-3-662-13130-5ds. Experiments using Convolutional Neural Networks showed that using class decomposition significantly improves the classification performance that can be achieved, without causing information loss, as it is the case with other class imbalance data sampling approaches.
24#
發(fā)表于 2025-3-25 17:07:16 | 只看該作者
https://doi.org/10.1007/978-3-662-10287-9o verify OVD shapes and dynamics with very little supervision, this work opens the way towards the use of massive amounts of unlabeled data to build robust remote identity document verification systems on commodity smartphones. Code is available at ..
25#
發(fā)表于 2025-3-25 23:35:31 | 只看該作者
26#
發(fā)表于 2025-3-26 00:22:37 | 只看該作者
A Multiclass Imbalanced Dataset Classification of?Symbols from?Piping and?Instrumentation Diagramsds. Experiments using Convolutional Neural Networks showed that using class decomposition significantly improves the classification performance that can be achieved, without causing information loss, as it is the case with other class imbalance data sampling approaches.
27#
發(fā)表于 2025-3-26 05:24:36 | 只看該作者
28#
發(fā)表于 2025-3-26 09:58:03 | 只看該作者
One-Shot Transformer-Based Framework for?Visually-Rich Document Understandingto the full set of labeled entities in the public SROIE datasets. We have also gathered and annotated the public RVL-CDIP and invoice datasets to showcase the generalization of our OTER models for the EE task across a wide range of document templates, containing both single and multiple-region fields.
29#
發(fā)表于 2025-3-26 12:56:25 | 只看該作者
Conference proceedings 20244, held in Athens, Greece, during August 30–September 4, 2024..The total of 144 full papers presented in these proceedings were carefully selected from 263 submissions..The papers reflect topics such as: Document image processing; physical and logical layout analysis; text and symbol recognition; ha
30#
發(fā)表于 2025-3-26 20:17:27 | 只看該作者
Beta-delayed (multi-)particle decay studies, to document resolution variability. Moreover, the few-shot approach allow the model to perform well even for unseen class of documents. Preliminary results on the SIDTD and Findit datasets show good performance of this model for this task.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-31 00:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东平县| 深圳市| 晋州市| 原平市| 抚远县| 镇远县| 抚远县| 沁水县| 开江县| 肇东市| 德格县| 政和县| 五寨县| 云梦县| 阳朔县| 泊头市| 买车| 蓬莱市| 白河县| 通州市| 潍坊市| 上饶县| 平乐县| 滦南县| 剑川县| 宣汉县| 莱芜市| 沅陵县| 平塘县| 客服| 西畴县| 台东县| 黎川县| 通道| 隆德县| 沙田区| 府谷县| 佳木斯市| 通化县| 丰镇市| 汕尾市|