找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Document Analysis and Recognition - ICDAR 2024; 18th International C Elisa H. Barney Smith,Marcus Liwicki,Liangrui Peng Conference proceedi

[復制鏈接]
樓主: Coenzyme
21#
發(fā)表于 2025-3-25 05:42:23 | 只看該作者
Conference proceedings 2024ndwriting recognition; document analysis systems; document classification; indexing and retrieval of documents; document synthesis; extracting document semantics; NLP for document understanding; office automation; graphics recognition; human document interaction; document representation modeling and much more...?.
22#
發(fā)表于 2025-3-25 08:28:28 | 只看該作者
0302-9743 ng document semantics; NLP for document understanding; office automation; graphics recognition; human document interaction; document representation modeling and much more...?.978-3-031-70532-8978-3-031-70533-5Series ISSN 0302-9743 Series E-ISSN 1611-3349
23#
發(fā)表于 2025-3-25 14:14:31 | 只看該作者
https://doi.org/10.1007/978-3-662-13130-5ds. Experiments using Convolutional Neural Networks showed that using class decomposition significantly improves the classification performance that can be achieved, without causing information loss, as it is the case with other class imbalance data sampling approaches.
24#
發(fā)表于 2025-3-25 17:07:16 | 只看該作者
https://doi.org/10.1007/978-3-662-10287-9o verify OVD shapes and dynamics with very little supervision, this work opens the way towards the use of massive amounts of unlabeled data to build robust remote identity document verification systems on commodity smartphones. Code is available at ..
25#
發(fā)表于 2025-3-25 23:35:31 | 只看該作者
26#
發(fā)表于 2025-3-26 00:22:37 | 只看該作者
A Multiclass Imbalanced Dataset Classification of?Symbols from?Piping and?Instrumentation Diagramsds. Experiments using Convolutional Neural Networks showed that using class decomposition significantly improves the classification performance that can be achieved, without causing information loss, as it is the case with other class imbalance data sampling approaches.
27#
發(fā)表于 2025-3-26 05:24:36 | 只看該作者
28#
發(fā)表于 2025-3-26 09:58:03 | 只看該作者
One-Shot Transformer-Based Framework for?Visually-Rich Document Understandingto the full set of labeled entities in the public SROIE datasets. We have also gathered and annotated the public RVL-CDIP and invoice datasets to showcase the generalization of our OTER models for the EE task across a wide range of document templates, containing both single and multiple-region fields.
29#
發(fā)表于 2025-3-26 12:56:25 | 只看該作者
Conference proceedings 20244, held in Athens, Greece, during August 30–September 4, 2024..The total of 144 full papers presented in these proceedings were carefully selected from 263 submissions..The papers reflect topics such as: Document image processing; physical and logical layout analysis; text and symbol recognition; ha
30#
發(fā)表于 2025-3-26 20:17:27 | 只看該作者
Beta-delayed (multi-)particle decay studies, to document resolution variability. Moreover, the few-shot approach allow the model to perform well even for unseen class of documents. Preliminary results on the SIDTD and Findit datasets show good performance of this model for this task.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-31 05:01
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
康乐县| 苍梧县| 武威市| 九龙县| 双江| 固阳县| 岳普湖县| 连州市| 吕梁市| 新蔡县| 图们市| 四川省| 卢湾区| 门源| 三门峡市| 工布江达县| 浑源县| 东兰县| 循化| 昌乐县| 墨江| 通化县| 濮阳市| 高州市| 蓝田县| 军事| 大港区| 延安市| 玉田县| 博野县| 东乡县| 潍坊市| 新田县| 合作市| 白水县| 文水县| 嘉义市| 定日县| 阳东县| 连城县| 华安县|