找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Digital Molecular Magnetic Resonance Imaging; Bamidele O. Awojoyogbe,Michael O. Dada Book 2024 The Editor(s) (if applicable) and The Autho

[復(fù)制鏈接]
查看: 34490|回復(fù): 56
樓主
發(fā)表于 2025-3-21 17:23:57 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Digital Molecular Magnetic Resonance Imaging
編輯Bamidele O. Awojoyogbe,Michael O. Dada
視頻videohttp://file.papertrans.cn/285/284722/284722.mp4
概述Presents computational and digital algorithms enabling the understanding of intricate structures in the human body.Discusses enhanced capabilities of MRI visualization to a level of anatomical visuali
叢書名稱Series in BioEngineering
圖書封面Titlebook: Digital Molecular Magnetic Resonance Imaging;  Bamidele O. Awojoyogbe,Michael O. Dada Book 2024 The Editor(s) (if applicable) and The Autho
描述.This book pushes the limits of conventional MRI visualization methods by completely changing the medical imaging landscape and leads to innovations that will help patients and healthcare providers alike. It enhances the capabilities of MRI anatomical visualization to a level that has never before been possible for researchers and clinicians. The computational and digital algorithms developed can enable a more thorough understanding of the intricate structures found within the human body, surpassing the constraints of traditional 2D methods. The Physics-informed Neural Networks as presented can enhance three-dimensional rendering for deeper understanding of the spatial relationships and subtle abnormalities of anatomical features and sets the stage for upcoming advancements that could impact a wider range of digital heath modalities. This book opens the door to ultra-powerful digital molecular MRI powered by quantum computing that can perform calculations that would take supercomputers millions of years..
出版日期Book 2024
關(guān)鍵詞Bloch NMR; Physics-informed neural networks (PINNs); Magnetic resonance relaxometry; Machine learning m
版次1
doihttps://doi.org/10.1007/978-981-97-6370-2
isbn_softcover978-981-97-6372-6
isbn_ebook978-981-97-6370-2Series ISSN 2196-8861 Series E-ISSN 2196-887X
issn_series 2196-8861
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Digital Molecular Magnetic Resonance Imaging影響因子(影響力)




書目名稱Digital Molecular Magnetic Resonance Imaging影響因子(影響力)學(xué)科排名




書目名稱Digital Molecular Magnetic Resonance Imaging網(wǎng)絡(luò)公開度




書目名稱Digital Molecular Magnetic Resonance Imaging網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Digital Molecular Magnetic Resonance Imaging被引頻次




書目名稱Digital Molecular Magnetic Resonance Imaging被引頻次學(xué)科排名




書目名稱Digital Molecular Magnetic Resonance Imaging年度引用




書目名稱Digital Molecular Magnetic Resonance Imaging年度引用學(xué)科排名




書目名稱Digital Molecular Magnetic Resonance Imaging讀者反饋




書目名稱Digital Molecular Magnetic Resonance Imaging讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:23:51 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:52:07 | 只看該作者
New Methodology and Modelling in Magnetic Resonance Imaging,problems solved in this chapter are described by a Bloch related equation based on close observation of how the system usually behaves in the presence of NMR magnetic fields. A few numbers of realistic assumptions have been made in order to obtain a solution to each differential equation that has be
地板
發(fā)表于 2025-3-22 07:19:20 | 只看該作者
5#
發(fā)表于 2025-3-22 12:33:46 | 只看該作者
Machine Learning Model for Diagnosis of Pulmonary Arterial Hypertension and Severe Aortic-Valve Ste) from Magnetic resonance relaxometry data that classifies the selected human diseases. The goal is to (i) develop machine learning models to improve the accuracy of predictions and decision-making in different models, (ii) use machine learning techniques for sorting across big datasets to identify
6#
發(fā)表于 2025-3-22 15:56:35 | 只看該作者
,A Convolution Neural Network for Artificial Intelligence-Based Classification of Alzheimer’s Diseasn of medical pictures related to Alzheimer’s disease. The CNN model will be used to train MRI brain images. In order to construct and deploy the model, this chapter makes use of specialized application software and libraries including Jupyter notebook, Python 3, Keras, and TensorFlow. The trained mo
7#
發(fā)表于 2025-3-22 17:13:13 | 只看該作者
8#
發(fā)表于 2025-3-23 00:40:04 | 只看該作者
9#
發(fā)表于 2025-3-23 02:17:54 | 只看該作者
10#
發(fā)表于 2025-3-23 07:09:47 | 只看該作者
Neural Radiance Fields (NeRFs) Technique to Render 3D Reconstruction of Magnetic Resonance Images,s, the thorough investigation of the intrinsic three-dimensional complexity of MRI data is restricted by conventional 2D visualization techniques. This restriction makes it difficult to interpret and comprehend complex anatomical details accurately, which reduces the possibility of making better cli
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-1 18:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
伊金霍洛旗| 庄浪县| 绥芬河市| 车致| 吴桥县| 万盛区| 遵化市| 弥勒县| 博乐市| 凤阳县| 红河县| 景宁| 贡觉县| 张家界市| 泰宁县| 武汉市| 泸溪县| 峨边| 商河县| 略阳县| 浮梁县| 麻栗坡县| 长乐市| 福泉市| 农安县| 石屏县| 西安市| 和林格尔县| 恩施市| 灵武市| 曲周县| 化德县| 射阳县| 抚松县| 临海市| 招远市| 邓州市| 大足县| 锦州市| 姜堰市| 新平|