找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dick de Jongh on Intuitionistic and Provability Logics; Nick Bezhanishvili,Rosalie Iemhoff,Fan Yang Book 2024 The Editor(s) (if applicable

[復(fù)制鏈接]
查看: 52503|回復(fù): 51
樓主
發(fā)表于 2025-3-21 17:15:10 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Dick de Jongh on Intuitionistic and Provability Logics
編輯Nick Bezhanishvili,Rosalie Iemhoff,Fan Yang
視頻videohttp://file.papertrans.cn/285/284621/284621.mp4
概述Comprehensive overview of Dick de Jongh‘s contributions to the theory of intuitionistic and provability logics.Detailed study of the de Jongh-Sambin fixed point theorem?and of modal, intuitionistic, a
叢書名稱Outstanding Contributions to Logic
圖書封面Titlebook: Dick de Jongh on Intuitionistic and Provability Logics;  Nick Bezhanishvili,Rosalie Iemhoff,Fan Yang Book 2024 The Editor(s) (if applicable
描述.This book is dedicated to Dick de Jongh’s contributions to the theory of intuitionistic and provability logics. Consisting of 13 chapters, written by leading experts,?this book discusses de Jongh’s?original contributions and consequent developments that have helped to shape these fields...?..The book begins with an autobiographic note?by Dick de Jongh, which discusses the main themes of his work and?places the other contributions in context.?The next?four chapters explore the De Jongh-Sambin fixed point theorem and other contributions to provability and interpretability logics. The?following?four chapters?focus on?modal, intuitionistic and intuitionistic modal logics. They?discuss?independence of formulas, unification and de Jongh formulas in intuitionistic and modal logics.?Then there follow two chapters on the other?two areas to which Dick de Jongh made important contributions: the theory of well-partial orders, and formal learning theory. The second to last chapter on Origami Geometry can be seen as representing the Master of Logic program of the Institute for Logic, Language and Computation (ILLC) in which de Jongh invested a lot of energy. The book ends with a complete biblio
出版日期Book 2024
關(guān)鍵詞Mathematical Logic; Intuitionistic Logic; Provability Logic; Theory of Well-partial Orders; Formal Learn
版次1
doihttps://doi.org/10.1007/978-3-031-47921-2
isbn_softcover978-3-031-47923-6
isbn_ebook978-3-031-47921-2Series ISSN 2211-2758 Series E-ISSN 2211-2766
issn_series 2211-2758
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Dick de Jongh on Intuitionistic and Provability Logics影響因子(影響力)




書目名稱Dick de Jongh on Intuitionistic and Provability Logics影響因子(影響力)學(xué)科排名




書目名稱Dick de Jongh on Intuitionistic and Provability Logics網(wǎng)絡(luò)公開度




書目名稱Dick de Jongh on Intuitionistic and Provability Logics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Dick de Jongh on Intuitionistic and Provability Logics被引頻次




書目名稱Dick de Jongh on Intuitionistic and Provability Logics被引頻次學(xué)科排名




書目名稱Dick de Jongh on Intuitionistic and Provability Logics年度引用




書目名稱Dick de Jongh on Intuitionistic and Provability Logics年度引用學(xué)科排名




書目名稱Dick de Jongh on Intuitionistic and Provability Logics讀者反饋




書目名稱Dick de Jongh on Intuitionistic and Provability Logics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:18:02 | 只看該作者
The ,-Provability Logic of HA Revisited,variables. Also the .-provability logic of the Heyting Arithmetic ., is characterized by (Ardeshir & Mojtahedi, .) as . (for definition of ., see Sect. .). In this paper, we find some translation ., which embeds . in ., the intuitionistic counterpart of ..
板凳
發(fā)表于 2025-3-22 01:06:41 | 只看該作者
An Overview of Verbrugge Semantics, a.k.a. Generalised Veltman Semantics,re endowed with relational semantics à la Kripke: Veltman semantics. For certain applications though, this semantics is not fine-grained enough. Back in 1992, in the research group of de Jongh, the notion of . emerged to obtain certain non-derivability results as was first presented by Verbrugge (.)
地板
發(fā)表于 2025-3-22 05:54:58 | 只看該作者
5#
發(fā)表于 2025-3-22 12:08:03 | 只看該作者
6#
發(fā)表于 2025-3-22 14:36:55 | 只看該作者
Intermediate Logics in the Setting of Team Semantics,diate logics in the team semantics setting. We do this by modifying . with axioms written with two different versions of disjunction in the logic, a local one and global one. We prove a characterization theorem in the first approach and we introduce a generalized team semantics in the second one.
7#
發(fā)表于 2025-3-22 17:17:58 | 只看該作者
Well Partial Orders,itting many other important results. Starting with recalling basic facts from De Jongh and Parikh’s fundamental paper on maximal order types we survey some related key results by Diana Schmidt. Then we discuss generalized trees, their embeddability relation and their associated maximal order types.
8#
發(fā)表于 2025-3-22 22:17:15 | 只看該作者
Learning to Act and Observe in Partially Observable Domains,hat it can observe and how its actions affect the environment. The agent can learn about this domain from experience gathered by taking actions in the domain and observing their results. We present learning algorithms capable of learning as much as possible (in a well-defined sense) both about what
9#
發(fā)表于 2025-3-23 04:38:57 | 只看該作者
Axiomatizing Origami Planes,ctions. We isolate the fragments corresponding to natural classes of origami constructions such as Pythagorean, Euclidean, and full origami constructions. The set of origami constructible points for each of the classes of constructions provides the minimal model of the corresponding set of logical a
10#
發(fā)表于 2025-3-23 07:33:10 | 只看該作者
https://doi.org/10.1007/978-3-031-47921-2Mathematical Logic; Intuitionistic Logic; Provability Logic; Theory of Well-partial Orders; Formal Learn
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 21:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新民市| 泗洪县| 峨山| 姚安县| 金门县| 钦州市| 达日县| 环江| 盐山县| 阿勒泰市| 延长县| 准格尔旗| 沙湾县| 镇平县| 调兵山市| 乌拉特中旗| 平果县| 南康市| 南岸区| 清苑县| 虞城县| 鲁甸县| 瑞昌市| 扬州市| 炎陵县| 兰州市| 清水河县| 蕉岭县| 水富县| 乌鲁木齐市| 长治市| 庐江县| 汝南县| 长葛市| 湛江市| 临沂市| 博爱县| 铁力市| 定结县| 新巴尔虎右旗| 乐山市|