找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dependent Data in Social Sciences Research; Forms, Issues, and M Mark Stemmler,Wolfgang Wiedermann,Francis L. Huang Book 2024Latest edition

[復制鏈接]
樓主: irritants
21#
發(fā)表于 2025-3-25 06:23:53 | 只看該作者
Jaitri Das,Buddhadeb Chattopadhyayestablished itself as one of the primary tools for the recursive partitioning of structural equation models (SEM). The resulting SEM trees partition the sample into groups of similar individuals while identifying the most important predictors of group differences in the process. However, until recen
22#
發(fā)表于 2025-3-25 11:23:43 | 只看該作者
Climate Change and Agriculture, is often the main direction of influence, there are also bidirectional processes, e.g., as described in the parent-child coercive cycle (cf. Patterson GR, Coercive family process. Castalia, Eugene, 1982). These processes were mainly investigated in clinical and other studies from North America, but
23#
發(fā)表于 2025-3-25 11:56:50 | 只看該作者
Electromagnetic Wave Absorption Materials,ine learning. This is a purely time-continuous approach relying on the theory of optimization for dynamical systems. We complement the proposed algorithm with a practical example, comparing the results of this approach to those obtained via Continuous Time Structural Equation Modeling (.). To this e
24#
發(fā)表于 2025-3-25 18:21:56 | 只看該作者
25#
發(fā)表于 2025-3-25 20:35:16 | 只看該作者
26#
發(fā)表于 2025-3-26 02:37:21 | 只看該作者
s various tools to study such mechanisms. However, owing to the lack of background knowledge, it is often difficult to prepare causal graphs required for performing statistical causal inference. To alleviate the difficulty, we have worked on developing statistical methods for estimating causal relat
27#
發(fā)表于 2025-3-26 04:45:06 | 只看該作者
28#
發(fā)表于 2025-3-26 08:55:29 | 只看該作者
Introduction to Manufacturing Engineering,al information on dependence in repeatedly measured outcomes, which may be valuable for building statistical models for explanation and prediction. This paper proposes an explorative approach to facilitate the understanding of dependence structures in longitudinal categorical data with ordinal outco
29#
發(fā)表于 2025-3-26 15:57:24 | 只看該作者
Helical, Bevel, and Worm Gears,onal datasets. Based on principles from Bayesian statistics, this approach goes beyond mere pattern recognition, delving into the realm of causation by modeling the probabilistic conditional dependencies among variables. This chapter discusses the logic of using Bayesian network analysis as a causal
30#
發(fā)表于 2025-3-26 18:13:15 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-5 20:19
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
锡林郭勒盟| 平武县| 临城县| 贞丰县| 罗城| 双鸭山市| 华池县| 奉节县| 岳普湖县| 大石桥市| 平南县| 石家庄市| 兴安盟| 阳泉市| 高平市| 酉阳| 西安市| 县级市| 民丰县| 芦溪县| 徐水县| 正阳县| 华亭县| 农安县| 威远县| 静海县| 赣榆县| 广州市| 北川| 达尔| 奉贤区| 南城县| 聊城市| 大理市| 达孜县| 济南市| 涟水县| 林芝县| 越西县| 宜州市| 茂名市|