找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dependent Data in Social Sciences Research; Forms, Issues, and M Mark Stemmler,Wolfgang Wiedermann,Francis L. Huang Book 2024Latest edition

[復制鏈接]
查看: 45845|回復: 55
樓主
發(fā)表于 2025-3-21 18:18:13 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Dependent Data in Social Sciences Research
副標題Forms, Issues, and M
編輯Mark Stemmler,Wolfgang Wiedermann,Francis L. Huang
視頻videohttp://file.papertrans.cn/285/284526/284526.mp4
概述Presents new developments and applications for dependent data.Includs methods for the analysis of longitudinal data and corrections for degrees of freedom.Covers growth curve modeling, directional dep
圖書封面Titlebook: Dependent Data in Social Sciences Research; Forms, Issues, and M Mark Stemmler,Wolfgang Wiedermann,Francis L. Huang Book 2024Latest edition
描述.This book covers the following subjects: growth curve modeling, directional dependence, dyadic data modeling, item response modeling (IRT), and other methods for the analysis of dependent data (e.g., approaches for modeling cross-section dependence, multidimensional scaling techniques, and mixed models). It presents contributions on handling data in which the postulate of independence in the data matrix is violated. When this postulate is violated and when the methods assuming independence are still applied, the estimated parameters are likely to be biased, and statistical decisions are very likely to be incorrect. Problems associated with dependence in data have been known for a long time, and led to the development of tailored methods for the analysis of dependent data in various areas of statistical analysis. These include, for example, methods for the analysis of longitudinal data, corrections for dependency,?and corrections for degrees of freedom.?.Researchers and graduate students in the social and behavioral sciences, education, econometrics, and medicine will find this?up-to-date overview of modern?statistical approaches for dealing with problems related to dependent data
出版日期Book 2024Latest edition
關鍵詞analysis of longitudinal panel count data; close proximity data; clustered or paired data; corrections
版次2
doihttps://doi.org/10.1007/978-3-031-56318-8
isbn_softcover978-3-031-56320-1
isbn_ebook978-3-031-56318-8
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Dependent Data in Social Sciences Research影響因子(影響力)




書目名稱Dependent Data in Social Sciences Research影響因子(影響力)學科排名




書目名稱Dependent Data in Social Sciences Research網絡公開度




書目名稱Dependent Data in Social Sciences Research網絡公開度學科排名




書目名稱Dependent Data in Social Sciences Research被引頻次




書目名稱Dependent Data in Social Sciences Research被引頻次學科排名




書目名稱Dependent Data in Social Sciences Research年度引用




書目名稱Dependent Data in Social Sciences Research年度引用學科排名




書目名稱Dependent Data in Social Sciences Research讀者反饋




書目名稱Dependent Data in Social Sciences Research讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:15:38 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:48:25 | 只看該作者
地板
發(fā)表于 2025-3-22 05:44:33 | 只看該作者
5#
發(fā)表于 2025-3-22 09:35:23 | 只看該作者
6#
發(fā)表于 2025-3-22 15:57:25 | 只看該作者
Exploration of Dependence Structures in Longitudinal Categorical Data with Ordinal Responsesrelationship with categorical covariates, the proposed approach consists of a set of SCCRAM-based strategies that take into account time dependence, data format, potential of asymmetric dependence, and model-free inference. The utility of the proposed method is demonstrated using two longitudinal ca
7#
發(fā)表于 2025-3-22 17:56:48 | 只看該作者
Bayesian Network for Discovering the Potential Causal Structure in Observational Dataht on the factors that drive observed patterns and phenomena, facilitating a clear understanding of the intricate web of relationships, enabling researchers and practitioners to derive meaningful insights, and making informed decisions based on a nuanced understanding of the causal mechanisms at pla
8#
發(fā)表于 2025-3-23 00:39:35 | 只看該作者
9#
發(fā)表于 2025-3-23 01:57:14 | 只看該作者
10#
發(fā)表于 2025-3-23 08:55:58 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-5 08:08
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
马鞍山市| 锡林浩特市| 麦盖提县| 龙州县| 襄樊市| 滁州市| 茌平县| 揭阳市| 金乡县| 穆棱市| 于田县| 溧阳市| 吉隆县| 郓城县| 揭东县| 浦县| 崇文区| 沁阳市| 蒲城县| 定州市| 龙南县| 赤壁市| 改则县| 怀宁县| 民权县| 永川市| 会东县| 普安县| 稻城县| 亚东县| 云南省| 栾城县| 中宁县| 惠东县| 运城市| 吴桥县| 北流市| 彭阳县| 自贡市| 密山市| 石林|