找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Reinforcement Learning with Python; RLHF for Chatbots an Nimish Sanghi Book 2024Latest edition Nimish Sanghi 2024 Artificial Intellige

[復(fù)制鏈接]
查看: 7167|回復(fù): 54
樓主
發(fā)表于 2025-3-21 17:33:44 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Deep Reinforcement Learning with Python
副標(biāo)題RLHF for Chatbots an
編輯Nimish Sanghi
視頻videohttp://file.papertrans.cn/285/284503/284503.mp4
概述Explains deep reinforcement learning implementation using TensorFlow, PyTorch and OpenAI Gym.Comprehensive coverage on fine-tuning Large Language Models using RLHF with complete code examples.Every co
圖書封面Titlebook: Deep Reinforcement Learning with Python; RLHF for Chatbots an Nimish Sanghi Book 2024Latest edition Nimish Sanghi 2024 Artificial Intellige
描述.Gain a theoretical understanding to the most popular libraries in deep reinforcement learning (deep RL).? This new edition focuses on the latest advances in deep RL using a learn-by-coding approach, allowing readers to assimilate and replicate the latest research in this field.?.New agent environments ranging from games, and robotics to finance are explained to help you try different ways to apply reinforcement learning. A chapter on multi-agent reinforcement learning covers how multiple agents compete, while another chapter focuses on the widely used deep RL algorithm, proximal policy optimization (PPO). You‘ll see how reinforcement learning with human feedback (RLHF) has been used by chatbots, built using Large Language Models, e.g. ChatGPT to improve conversational capabilities..You‘ll also review the steps for using the code on multiple cloud systems and deploying models on platforms such as Hugging Face Hub. The code is in Jupyter Notebook, which canbe run on Google Colab, and other similar deep learning cloud platforms, allowing you to tailor the code to your own needs.?.Whether it’s for applications in gaming, robotics, or Generative AI,?.Deep Reinforcement Learning with Py
出版日期Book 2024Latest edition
關(guān)鍵詞Artificial Intelligence; Deep Reinforcement Learning; PyTorch; Neural Networks; Robotics; Autonomous Vehi
版次2
doihttps://doi.org/10.1007/979-8-8688-0273-7
isbn_softcover979-8-8688-0272-0
isbn_ebook979-8-8688-0273-7
copyrightNimish Sanghi 2024
The information of publication is updating

書目名稱Deep Reinforcement Learning with Python影響因子(影響力)




書目名稱Deep Reinforcement Learning with Python影響因子(影響力)學(xué)科排名




書目名稱Deep Reinforcement Learning with Python網(wǎng)絡(luò)公開度




書目名稱Deep Reinforcement Learning with Python網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Deep Reinforcement Learning with Python被引頻次




書目名稱Deep Reinforcement Learning with Python被引頻次學(xué)科排名




書目名稱Deep Reinforcement Learning with Python年度引用




書目名稱Deep Reinforcement Learning with Python年度引用學(xué)科排名




書目名稱Deep Reinforcement Learning with Python讀者反饋




書目名稱Deep Reinforcement Learning with Python讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:08:28 | 只看該作者
The Foundation: Markov Decision Processes,s under the branch of probability that models sequential decision-making behavior. Although most of the problems you‘ll study in reinforcement learning are modeled as . (MDP), this chapter starts by introducing Markov chains (MC) followed by Markov reward processes (MRP). Next, the chapter discusses
板凳
發(fā)表于 2025-3-22 03:16:03 | 只看該作者
Model-Based Approaches,nt transitions from one state to another. Equations . and . clearly indicate that .(.) and .(., .) depend on two components, the transition dynamics and the next state/state-action values. To lay the foundations of RL learning, this chapter starts with the simplest setup—one in which the transition
地板
發(fā)表于 2025-3-22 07:58:14 | 只看該作者
5#
發(fā)表于 2025-3-22 11:09:25 | 只看該作者
6#
發(fā)表于 2025-3-22 13:11:39 | 只看該作者
7#
發(fā)表于 2025-3-22 17:15:02 | 只看該作者
Improvements to DQN**, NoisyNets DQN, C-51 (Categorical 51-Atom DQN), Quantile Regression DQN, and Hindsight Experience Replay. All the examples in this chapter are coded using PyTorch. This is an optional chapter with each variant of DQN as a standalone topic. You can skip this chapter in the first pass and come back to
8#
發(fā)表于 2025-3-22 23:19:27 | 只看該作者
9#
發(fā)表于 2025-3-23 01:57:32 | 只看該作者
Combining Policy Gradient and Q-Learning,s. You looked at policy gradients in Chapter .. Neural network training requires multiple iterations, and Q-learning, an off-policy approach, enables you to reuse sample transitions multiple times, giving you sample efficiency. However, Q-learning can be unstable at times. Further, it is an indirect
10#
發(fā)表于 2025-3-23 07:37:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 14:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
寿宁县| 丽江市| 仪陇县| 浠水县| 铅山县| 夏邑县| 房产| 齐河县| 喜德县| 青龙| 三原县| 含山县| 体育| 林口县| 林州市| 赣州市| 梧州市| 隆子县| 梅州市| 溆浦县| 中牟县| 临漳县| 安多县| 博兴县| 嘉峪关市| 阿瓦提县| 甘孜县| 交城县| 密云县| 封开县| 布尔津县| 千阳县| 松江区| 布拖县| 贵南县| 瓦房店市| 蕲春县| 会理县| 罗江县| 拜城县| 博爱县|