找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning for Video Understanding; Zuxuan Wu,Yu-Gang Jiang Book 2024 The Editor(s) (if applicable) and The Author(s), under exclusive

[復(fù)制鏈接]
樓主: digestive-tract
21#
發(fā)表于 2025-3-25 03:53:19 | 只看該作者
Overview of Video Understanding,tal media, video owns the unique charm of conveying rich and vivid information, making it more and more popular on various social platforms. At the same time, video understanding techniques, which aim to recognize the objects and actions within videos and analyze their temporal evolution, are gainin
22#
發(fā)表于 2025-3-25 08:04:19 | 只看該作者
23#
發(fā)表于 2025-3-25 14:26:04 | 只看該作者
24#
發(fā)表于 2025-3-25 16:32:03 | 只看該作者
Deep Learning for Video Localization,wever, video recognition is limited in understanding the overall event that exists in a video, without a fine-grained analysis of video segments. To compensate for the limitations of video recognition, video localization provides an accurate and comprehensive understanding of videos by predicting wh
25#
發(fā)表于 2025-3-25 23:24:24 | 只看該作者
26#
發(fā)表于 2025-3-26 00:46:11 | 只看該作者
Unsupervised Feature Learning for Video Understanding,of large-scale training datasets. Vast amounts of annotated data have led to the growth in the performance of supervised learning; nevertheless, manual collection and annotation are demanding of time and labor. Subsequently, research interests have been aroused in unsupervised feature learning that
27#
發(fā)表于 2025-3-26 06:37:28 | 只看該作者
Efficient Video Understanding,a result, the development of efficient deep video models and training strategies is necessary for practical video understanding applications. In this chapter, we will delve into the design choices for creating compact video understanding models, such as CNNs and Transformers. Furthermore, we will ex
28#
發(fā)表于 2025-3-26 09:42:15 | 只看該作者
Conclusion and Future Directions,hapters. Furthermore, this chapter will also look into the future of deep-learning-based video understanding by briefly discussing several promising directions, e.g., the construction of large-scale video foundation models, the application of large language models (LLMs) in video understanding, etc.
29#
發(fā)表于 2025-3-26 12:48:38 | 只看該作者
30#
發(fā)表于 2025-3-26 19:16:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 19:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
富平县| 盐亭县| 淮北市| 水富县| 诏安县| 博爱县| 南通市| 大新县| 衢州市| 木兰县| 安阳县| 瑞金市| 永吉县| 闸北区| 高邑县| 额济纳旗| 贵阳市| 连城县| 南通市| 雅安市| 玉山县| 都安| 巢湖市| 思茅市| 黄大仙区| 旌德县| 罗平县| 巴林右旗| 宁强县| 嘉荫县| 江油市| 澄迈县| 西和县| 中宁县| 诸暨市| 临桂县| 林州市| 龙井市| 当阳市| 宜阳县| 库伦旗|