找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning for Video Understanding; Zuxuan Wu,Yu-Gang Jiang Book 2024 The Editor(s) (if applicable) and The Author(s), under exclusive

[復(fù)制鏈接]
查看: 12402|回復(fù): 45
樓主
發(fā)表于 2025-3-21 20:09:09 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Deep Learning for Video Understanding
編輯Zuxuan Wu,Yu-Gang Jiang
視頻videohttp://file.papertrans.cn/285/284501/284501.mp4
概述Presents an overview of deep learning techniques for video understanding.Covers important topics like action recognition, action localization, video captioning, and more.Introduces cutting-edge and st
叢書名稱Wireless Networks
圖書封面Titlebook: Deep Learning for Video Understanding;  Zuxuan Wu,Yu-Gang Jiang Book 2024 The Editor(s) (if applicable) and The Author(s), under exclusive
描述.This book presents deep learning techniques for video understanding. For deep learning basics, the authors cover machine learning pipelines and notations, 2D and 3D Convolutional Neural Networks for spatial and temporal feature learning. For action recognition, the authors introduce classical frameworks for image classification, and then elaborate both image-based and clip-based 2D/3D CNN networks for action recognition. For action detection, the authors elaborate sliding windows, proposal-based detection methods, single stage and two stage approaches, spatial and temporal action localization, followed by datasets introduction. For video captioning, the authors present language-based models and how to perform sequence to sequence learning for video captioning. For unsupervised feature learning, the authors discuss the necessity of shifting from supervised learning to unsupervised learning and then introduce how to design better surrogate training tasks to learn video representations. Finally, the book introduces recent self-training pipelines like contrastive learning and masked image/video modeling with transformers. The book provides promising directions, with an aim to promote
出版日期Book 2024
關(guān)鍵詞action recognition; video captioning; action localization; motion extraction; spatial-temporal feature l
版次1
doihttps://doi.org/10.1007/978-3-031-57679-9
isbn_softcover978-3-031-57681-2
isbn_ebook978-3-031-57679-9Series ISSN 2366-1186 Series E-ISSN 2366-1445
issn_series 2366-1186
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Deep Learning for Video Understanding影響因子(影響力)




書目名稱Deep Learning for Video Understanding影響因子(影響力)學(xué)科排名




書目名稱Deep Learning for Video Understanding網(wǎng)絡(luò)公開度




書目名稱Deep Learning for Video Understanding網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Deep Learning for Video Understanding被引頻次




書目名稱Deep Learning for Video Understanding被引頻次學(xué)科排名




書目名稱Deep Learning for Video Understanding年度引用




書目名稱Deep Learning for Video Understanding年度引用學(xué)科排名




書目名稱Deep Learning for Video Understanding讀者反饋




書目名稱Deep Learning for Video Understanding讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:14:08 | 只看該作者
Book 2024ng and then introduce how to design better surrogate training tasks to learn video representations. Finally, the book introduces recent self-training pipelines like contrastive learning and masked image/video modeling with transformers. The book provides promising directions, with an aim to promote
板凳
發(fā)表于 2025-3-22 01:57:04 | 只看該作者
the hotbeds of pretext tasks, which refer to network optimization tasks based on surrogate signals without human supervision, facilitating better performance on video-related downstream tasks. In this chapter, we undertake a comprehensive review of UVL, which begins with a preliminary introduction o
地板
發(fā)表于 2025-3-22 08:19:14 | 只看該作者
5#
發(fā)表于 2025-3-22 09:48:32 | 只看該作者
2366-1186 n, video captioning, and more.Introduces cutting-edge and st.This book presents deep learning techniques for video understanding. For deep learning basics, the authors cover machine learning pipelines and notations, 2D and 3D Convolutional Neural Networks for spatial and temporal feature learning. F
6#
發(fā)表于 2025-3-22 15:10:33 | 只看該作者
7#
發(fā)表于 2025-3-22 18:20:38 | 只看該作者
Angst – Bedingung des Mensch-Seinsirections, e.g., the construction of large-scale video foundation models, the application of large language models (LLMs) in video understanding, etc. By depicting these exciting prospects, we encourage the readers to embark on new endeavors to contribute to the advancement of this field.
8#
發(fā)表于 2025-3-22 23:24:38 | 只看該作者
Book 2024ions, 2D and 3D Convolutional Neural Networks for spatial and temporal feature learning. For action recognition, the authors introduce classical frameworks for image classification, and then elaborate both image-based and clip-based 2D/3D CNN networks for action recognition. For action detection, th
9#
發(fā)表于 2025-3-23 02:50:19 | 只看該作者
,I. Führung der eigenen Person,en successively proposed, promoting this large field to becoming more and more mature. In this chapter, we will briefly introduce the above aspects and travel through the corridors of time to systematically review the chronology of this dynamic field.
10#
發(fā)表于 2025-3-23 09:34:22 | 只看該作者
Fallstudien ?Führung von Experten“ons of these backbones. By the end of the chapter, readers will have a solid understanding of the basics of deep learning for video understanding and be well-equipped to explore more advanced topics in this exciting field.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 15:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
兴义市| 永康市| 太仓市| 甘泉县| 哈巴河县| 仙桃市| 龙陵县| 驻马店市| 富裕县| 弥渡县| 华宁县| 开封市| 睢宁县| 县级市| 新竹县| 云梦县| 淮安市| 武胜县| 吕梁市| 孟连| 黑水县| 清苑县| 万盛区| 延边| 济南市| 桃源县| 治多县| 喀喇沁旗| 偃师市| 济阳县| 闽侯县| 肥城市| 遂溪县| 赫章县| 开江县| 武邑县| 泽州县| 淳化县| 咸丰县| 泾源县| 揭东县|