找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning Theory and Applications; 5th International Co Ana Fred,Allel Hadjali,Carlo Sansone Conference proceedings 2024 The Editor(s)

[復(fù)制鏈接]
查看: 47296|回復(fù): 52
樓主
發(fā)表于 2025-3-21 19:19:40 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Deep Learning Theory and Applications
副標(biāo)題5th International Co
編輯Ana Fred,Allel Hadjali,Carlo Sansone
視頻videohttp://file.papertrans.cn/285/284498/284498.mp4
叢書名稱Communications in Computer and Information Science
圖書封面Titlebook: Deep Learning Theory and Applications; 5th International Co Ana Fred,Allel Hadjali,Carlo Sansone Conference proceedings 2024 The Editor(s)
描述.The two-volume set CCIS 2171 and 2172 constitutes the refereed best papers from the 5th International Conference on Deep Learning Theory and Applications, DeLTA 2024, which took place in Dijon, France, during July 10-11, 2024.?..The 44 papers included in these proceedings were carefully reviewed and selected from a total of 70 submissions. They focus on topics such as deep learning and big data analytics; machine-learning and artificial intelligence, etc.?.
出版日期Conference proceedings 2024
關(guān)鍵詞Models and Algorithms; machine learning; Big Data Analytics; Computer Vision Applications; Natural Langu
版次1
doihttps://doi.org/10.1007/978-3-031-66694-0
isbn_softcover978-3-031-66693-3
isbn_ebook978-3-031-66694-0Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Deep Learning Theory and Applications影響因子(影響力)




書目名稱Deep Learning Theory and Applications影響因子(影響力)學(xué)科排名




書目名稱Deep Learning Theory and Applications網(wǎng)絡(luò)公開度




書目名稱Deep Learning Theory and Applications網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Deep Learning Theory and Applications被引頻次




書目名稱Deep Learning Theory and Applications被引頻次學(xué)科排名




書目名稱Deep Learning Theory and Applications年度引用




書目名稱Deep Learning Theory and Applications年度引用學(xué)科排名




書目名稱Deep Learning Theory and Applications讀者反饋




書目名稱Deep Learning Theory and Applications讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:11:11 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:42:40 | 只看該作者
地板
發(fā)表于 2025-3-22 06:42:55 | 只看該作者
,Die Identit?tsarbeit der Führungskraft,on time (13.) was only occasionally included. The 62 papers used 57 different datasets to evaluate their respective strategies. Most datasets contained newspaper articles or biomedical/medical data. Our analysis revealed that 26 out of 57 datasets are publicly accessible.. Numerous active learning s
5#
發(fā)表于 2025-3-22 09:17:59 | 只看該作者
,IT — eine Industrie hat sich normalisiert,ated deaths, reaching nearly 1500 during the four heatwave episodes and exceeding 5000 over the entire summer period, as documented by the Ministry of Ecology, emphasizes the crucial nature of our research. Over an eight-year period, from 2015 to 2023, our methodology encompasses data preparation, i
6#
發(fā)表于 2025-3-22 14:52:06 | 只看該作者
Teamperspektive: altersheterogene Teams,performed all other classifiers with an accuracy of 95.68% and a prediction time of 13?s. The second highest performer was the Naive Bayes classifier which attained an accuracy of 95.38% and a prediction time of 0.2?s.
7#
發(fā)表于 2025-3-22 20:37:58 | 只看該作者
pared to T-T-T-T architecture when trained from scratch on limited data. This project proposes an architecture modifying the SegFormer Transformer with two convolutional modules, achieving pixel accuracies of 0.6956 on MS COCO.
8#
發(fā)表于 2025-3-23 00:39:52 | 只看該作者
9#
發(fā)表于 2025-3-23 04:11:26 | 只看該作者
Innenkolonisation und Naturalwirtschaft,e food products with varying viscosity through different flour and water mixtures, we aim to investigate the feasibility of developing an automatic, deep-learning-based system for real-time viscosity estimation in manufacturing processes. Our results indicate that our proposed methodology can automa
10#
發(fā)表于 2025-3-23 05:50:59 | 只看該作者
ning process. However, the aim of the article is not to improve individual aspects of neural network algorithm operation but to demonstrate the effectiveness of applying vector-matrix analysis to study various properties of neural network data processing.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 10:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
双鸭山市| 冕宁县| 大埔县| 积石山| 宁阳县| 白水县| 富川| 海城市| 潢川县| 吉安县| 信宜市| 乐安县| 阿巴嘎旗| 平安县| 呼伦贝尔市| 隆安县| 从化市| 苏州市| 密山市| 日照市| 定襄县| 吉首市| 荥经县| 阿巴嘎旗| 璧山县| 通化县| 儋州市| 富宁县| 勃利县| 清远市| 志丹县| 博乐市| 北京市| 凌海市| 辉南县| 东辽县| 通化县| 辽源市| 洮南市| 屯留县| 海盐县|