找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Generative Models; 4th MICCAI Workshop, Anirban Mukhopadhyay,Ilkay Oksuz,Yixuan Yuan Conference proceedings 2025 The Editor(s) (if app

[復(fù)制鏈接]
樓主: 切口
51#
發(fā)表于 2025-3-30 10:50:26 | 只看該作者
52#
發(fā)表于 2025-3-30 13:25:56 | 只看該作者
,Vorbildfunktion der Führungskraft,compressed images, these metrics have shown very useful. Extensive tests of such metrics on benchmarks of artificially distorted natural images have revealed which metric best correlate with human perception of quality. Direct transfer of these metrics to the evaluation of generative models in medic
53#
發(fā)表于 2025-3-30 19:32:47 | 只看該作者
Christian St?we,Lara Keromosemitocal imaging. However, collecting the necessary amount of data is often impractical due to patient privacy concerns or restricted time for medical annotation. Recent advances in generative models in medical imaging with a focus on diffusion-based techniques could provide realistic-looking synthetic s
54#
發(fā)表于 2025-3-30 21:42:50 | 只看該作者
55#
發(fā)表于 2025-3-31 02:08:57 | 只看該作者
,Das ?rgernis: ?Der Druck macht fertig“, only lead to uncertainty in the reconstructed image but also in downstream tasks such as semantic segmentation. This uncertainty, however, is mostly not analyzed in the literature, even though probabilistic reconstruction models are commonly used. These models can be prone to ignore plausible but u
56#
發(fā)表于 2025-3-31 06:23:06 | 只看該作者
Dieter Buchner,Josef A. Schmelzerconcerns. Existing image quality metrics often rely on reference images, are tailored for group comparisons, or are intended for 2D natural images, limiting their efficacy in complex domains like medical imaging. This study introduces a novel deep learning-based non-reference approach to assess brai
57#
發(fā)表于 2025-3-31 10:53:17 | 只看該作者
58#
發(fā)表于 2025-3-31 17:03:57 | 只看該作者
59#
發(fā)表于 2025-3-31 20:52:19 | 只看該作者
60#
發(fā)表于 2025-3-31 23:04:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 05:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武汉市| 长兴县| 手游| 汾西县| 都匀市| 大连市| 陆川县| 河西区| 灌云县| 泰和县| 合江县| 遵义市| 凤冈县| 鹰潭市| 吕梁市| 铜川市| 蓝田县| 宁城县| 河东区| 明光市| 大名县| 恩平市| 望奎县| 思茅市| 肇州县| 平武县| 武川县| 赤壁市| 磐石市| 乌什县| 新乡县| 苗栗市| 托克托县| 衡南县| 澎湖县| 凤翔县| 思南县| 水富县| 台江县| 莒南县| 新郑市|