找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Generative Models; 4th MICCAI Workshop, Anirban Mukhopadhyay,Ilkay Oksuz,Yixuan Yuan Conference proceedings 2025 The Editor(s) (if app

[復(fù)制鏈接]
樓主: 切口
51#
發(fā)表于 2025-3-30 10:50:26 | 只看該作者
52#
發(fā)表于 2025-3-30 13:25:56 | 只看該作者
,Vorbildfunktion der Führungskraft,compressed images, these metrics have shown very useful. Extensive tests of such metrics on benchmarks of artificially distorted natural images have revealed which metric best correlate with human perception of quality. Direct transfer of these metrics to the evaluation of generative models in medic
53#
發(fā)表于 2025-3-30 19:32:47 | 只看該作者
Christian St?we,Lara Keromosemitocal imaging. However, collecting the necessary amount of data is often impractical due to patient privacy concerns or restricted time for medical annotation. Recent advances in generative models in medical imaging with a focus on diffusion-based techniques could provide realistic-looking synthetic s
54#
發(fā)表于 2025-3-30 21:42:50 | 只看該作者
55#
發(fā)表于 2025-3-31 02:08:57 | 只看該作者
,Das ?rgernis: ?Der Druck macht fertig“, only lead to uncertainty in the reconstructed image but also in downstream tasks such as semantic segmentation. This uncertainty, however, is mostly not analyzed in the literature, even though probabilistic reconstruction models are commonly used. These models can be prone to ignore plausible but u
56#
發(fā)表于 2025-3-31 06:23:06 | 只看該作者
Dieter Buchner,Josef A. Schmelzerconcerns. Existing image quality metrics often rely on reference images, are tailored for group comparisons, or are intended for 2D natural images, limiting their efficacy in complex domains like medical imaging. This study introduces a novel deep learning-based non-reference approach to assess brai
57#
發(fā)表于 2025-3-31 10:53:17 | 只看該作者
58#
發(fā)表于 2025-3-31 17:03:57 | 只看該作者
59#
發(fā)表于 2025-3-31 20:52:19 | 只看該作者
60#
發(fā)表于 2025-3-31 23:04:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 05:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
漳平市| 瑞昌市| 朝阳市| 五台县| 丹凤县| 华容县| 孝义市| 通化市| 辛集市| 民丰县| 蓝山县| 宣恩县| 霞浦县| 旬邑县| 镇坪县| 威信县| 宁津县| 平邑县| 德州市| 巩留县| 靖边县| 吉首市| 绍兴县| 高雄市| 祁连县| 梧州市| 莱州市| 清河县| 界首市| 秦安县| 淄博市| 抚宁县| 清水河县| 滁州市| 成都市| 禹州市| 白山市| 永修县| 定襄县| 晋州市| 阿克陶县|