找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Database Systems for Advanced Applications; 29th International C Makoto Onizuka,Jae-Gil Lee,Kejing Lu Conference proceedings 2024 The Edito

[復(fù)制鏈接]
樓主: Glitch
41#
發(fā)表于 2025-3-28 16:34:06 | 只看該作者
On Compressing Historical Cliques in?Temporal Graphsd bioinformatics. Many real-world graphs change over time, with edges arriving continuously, and each edge has a timestamp representing the arrival time of that edge; such graphs are also known as temporal graphs. All maximal cliques in all snapshots since all possible historical moments are called
42#
發(fā)表于 2025-3-28 22:36:12 | 只看該作者
43#
發(fā)表于 2025-3-29 00:58:55 | 只看該作者
MIPM: A Multidimensional Information Perception Model for?Estimating Time of?Arrival on?Real Road Nees. Thus, despite many existing works focusing on improving the efficiency and accuracy of the transportation system, however, few of them can handle multidimensional features on road networks. In this paper, we focus on a famous problem of the intelligent transportation system named estimated time
44#
發(fā)表于 2025-3-29 06:21:23 | 只看該作者
45#
發(fā)表于 2025-3-29 10:03:10 | 只看該作者
TimeGAE: A Multivariate Time-Series Generation Method via?Graph Auto Encoders this issue, time series generation methods have emerged as a promising approach to alleviate data scarcity. However, most existing methods do not explicitly consider multivariate time series, thereby failing to fully exploit the potential spatial dependencies among different variables. The ability
46#
發(fā)表于 2025-3-29 13:54:52 | 只看該作者
47#
發(fā)表于 2025-3-29 18:33:03 | 只看該作者
Simulating Individual Infection Risk over?Big Trajectory Data attention. They are helpful in predicting epidemic transmission trends and mitigating the spread of infectious diseases. In this light, we study a new problem of Individual Infection Risk Assessment (IIRA) on the basis of fine-grained trajectory data. The problem aims to quantify the infection risk
48#
發(fā)表于 2025-3-29 19:56:09 | 只看該作者
Flexible Contact Correlation Learning on?Spatio-Temporal Trajectoriesch or tracing, aiming to identify all trajectories in contact with a query trajectory. However, these studies only consider spatial contacts at specific timestamps, and highly rely on precise data with consistent sampling rates and aligned timestamps. In light of these limitations, we investigate th
49#
發(fā)表于 2025-3-30 02:47:58 | 只看該作者
Inductive Spatial Temporal Prediction Under Data Drift with?Informative Graph Neural Networkms, stock markets). However, external events (e.g., urban structural growth, market crash) and emerging new entities (e.g., locations, stocks) can undermine prediction accuracy by inducing data drift over time. Most existing studies extract invariant patterns to counter data drift but ignore pattern
50#
發(fā)表于 2025-3-30 06:43:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 20:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泰顺县| 富蕴县| 那曲县| 宁明县| 本溪市| 郑州市| 汪清县| 介休市| 陇南市| 阳城县| 泌阳县| 阿拉善右旗| 巴马| 新宾| 崇义县| 新民市| 广德县| 运城市| 郑州市| 赤城县| 灵川县| 于田县| 泰州市| 镇原县| 宣武区| 马山县| 南和县| 五原县| 民权县| 张家川| 石家庄市| 冷水江市| 视频| 随州市| 苍梧县| 凭祥市| 静宁县| 昭苏县| 南昌县| 高雄市| 松滋市|