找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Database Systems for Advanced Applications; 29th International C Makoto Onizuka,Jae-Gil Lee,Kejing Lu Conference proceedings 2024 The Edito

[復(fù)制鏈接]
樓主: Glitch
11#
發(fā)表于 2025-3-23 11:57:50 | 只看該作者
termed as ., which combines POI data and road network data to generate the distribution of traffic flows. Our model has two novel modules: a graph reconstruction module and a POI supervised contrastive module. The graph reconstruction module includes a .-NN graph builder and a .-NN graph aggregator
12#
發(fā)表于 2025-3-23 17:07:08 | 只看該作者
https://doi.org/10.1007/978-3-642-59504-2 propose a self-adaptive . solution with a built-in suboperator cost model that dynamically selects the best . strategy at runtime according to the data skew of the target query. We implement the solution in the commercial shared-nothing ., namely CockroachDB and empirical study justifies that the s
13#
發(fā)表于 2025-3-23 18:17:17 | 只看該作者
14#
發(fā)表于 2025-3-24 00:05:51 | 只看該作者
15#
發(fā)表于 2025-3-24 04:54:38 | 只看該作者
16#
發(fā)表于 2025-3-24 07:59:29 | 只看該作者
MIPM: A Multidimensional Information Perception Model for?Estimating Time of?Arrival on?Real Road Neom Raw-ETA. After that, we design a SPETAformer block to ensure that the extract module can capture the multidimensional correlation of the above features. The recurrent module further enhances the learning ability of the MIPM in the temporal domain by week, daily, recent, and weather four different
17#
發(fā)表于 2025-3-24 12:02:49 | 只看該作者
TimeGAE: A Multivariate Time-Series Generation Method via?Graph Auto Encoderrelationships. We also incorporate transformer-encoder or RNN modules to enhance the ability to retain temporal dynamics for time series feature extraction. Several comparisons and ablation experiments on three multivariate time series datasets have been conducted. Our results demonstrate that TimeG
18#
發(fā)表于 2025-3-24 16:06:10 | 只看該作者
Beyond SweepLine: Efficient MaxRS Queries over?Inaccurate Location Datar algorithm to address two more complex scenarios: the dynamic MaxRS (DMaxRS) query, which accounts for the varying locations of objects over time, and the MaxRS query on trajectory data (MaxRST), where each object is represented by a sequence of points, not just a singular point. Our experimental r
19#
發(fā)表于 2025-3-24 20:15:52 | 只看該作者
Flexible Contact Correlation Learning on?Spatio-Temporal Trajectories potential contact positions using a soft selection module. The contact scores are then derived from the embeddings of the contact trajectory parts. Experiments on two real-world datasets show that ST-TCN outperforms baseline solutions and exhibits superior efficiency in terms of both running time a
20#
發(fā)表于 2025-3-25 02:46:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 23:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南溪县| 涟水县| 武冈市| 舒城县| 金门县| 眉山市| 安图县| 原平市| 黎平县| 瑞安市| 儋州市| 合阳县| 吉水县| 呼图壁县| 阳朔县| 和田市| 祁门县| 临颍县| 黄浦区| 德惠市| 渝北区| 上蔡县| 青田县| 平武县| 德江县| 吉安县| 海林市| 云霄县| 苍梧县| 永新县| 霸州市| 余江县| 东港市| 寻乌县| 吉水县| 无棣县| 怀柔区| 宜宾县| 石楼县| 长治市| 中阳县|