找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Engineering in Medical Imaging; Second MICCAI Worksh Binod Bhattarai,Sharib Ali,Danail Stoyanov Conference proceedings 2025 The Editor

[復(fù)制鏈接]
查看: 28743|回復(fù): 59
樓主
發(fā)表于 2025-3-21 16:27:59 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Data Engineering in Medical Imaging
副標(biāo)題Second MICCAI Worksh
編輯Binod Bhattarai,Sharib Ali,Danail Stoyanov
視頻videohttp://file.papertrans.cn/285/284440/284440.mp4
叢書(shū)名稱(chēng)Lecture Notes in Computer Science
圖書(shū)封面Titlebook: Data Engineering in Medical Imaging; Second MICCAI Worksh Binod Bhattarai,Sharib Ali,Danail Stoyanov Conference proceedings 2025 The Editor
描述.This book constitutes the proceedings of the Second MICCAI Workshop on Data Engineering in Medical Imaging, DEMI 2024, held in conjunction with the 27th International conference on?Medical Image Computing and Computer Assisted Intervention, MICCAI 2024, in?Marrakesh, Morocco, on October 10, 2024...The 18 papers presented in this book were carefully reviewed and selected. These papers focus on the application of various Data engineering techniques in the field of Medical Imaging...?..?.
出版日期Conference proceedings 2025
關(guān)鍵詞data augmentation; synthetic data; active learning; medical imaging; data synthesis; federated learning; m
版次1
doihttps://doi.org/10.1007/978-3-031-73748-0
isbn_softcover978-3-031-73747-3
isbn_ebook978-3-031-73748-0Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱(chēng)Data Engineering in Medical Imaging影響因子(影響力)




書(shū)目名稱(chēng)Data Engineering in Medical Imaging影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Data Engineering in Medical Imaging網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Data Engineering in Medical Imaging網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Data Engineering in Medical Imaging被引頻次




書(shū)目名稱(chēng)Data Engineering in Medical Imaging被引頻次學(xué)科排名




書(shū)目名稱(chēng)Data Engineering in Medical Imaging年度引用




書(shū)目名稱(chēng)Data Engineering in Medical Imaging年度引用學(xué)科排名




書(shū)目名稱(chēng)Data Engineering in Medical Imaging讀者反饋




書(shū)目名稱(chēng)Data Engineering in Medical Imaging讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:00:19 | 只看該作者
,Evaluating Histopathology Foundation Models for?Few-Shot Tissue Clustering: An?Application to?LC250kage in model training can lead to artificially high metrics that do not genuinely reflect the strength of the approach. The LC25000 dataset, consisting of tissue image tiles extracted from lung and colon samples, is a popular benchmark dataset. In the released version, tissue tiles were augmented r
板凳
發(fā)表于 2025-3-22 01:35:00 | 只看該作者
,Counterfactual Contrastive Learning: Robust Representations via?Causal Image Synthesis,it is sensitive to the choice of augmentation pipeline. Positive pairs should preserve semantic information while destroying domain-specific information. Standard augmentation pipelines emulate domain-specific changes with pre-defined photometric transformations, but what if we could simulate realis
地板
發(fā)表于 2025-3-22 05:54:04 | 只看該作者
,TTA-OOD: Test-Time Augmentation for?Improving Out-of-Distribution Detection in?Gastrointestinal Visting diagnosis within gastrointestinal settings is the detection of abnormal cases in endoscopic images. Due to the sparsity of data, this process of distinguishing normal from abnormal cases has faced significant challenges, particularly with rare and unseen conditions. To address this issue, we fr
5#
發(fā)表于 2025-3-22 09:43:58 | 只看該作者
6#
發(fā)表于 2025-3-22 16:17:00 | 只看該作者
,USegMix: Unsupervised Segment Mix for?Efficient Data Augmentation in?Pathology Images,l technique to mitigate this limitation. In this study, we introduce an efficient data augmentation method for pathology images, called USegMix. Given a set of pathology images, the proposed method generates a new, synthetic image in two phases. In the first phase, USegMix constructs a pool of tissu
7#
發(fā)表于 2025-3-22 18:41:33 | 只看該作者
,Synthetic Simplicity: Unveiling Bias in?Medical Data Augmentation,herent statistical characteristics can significantly impact downstream tasks, potentially compromising deployment performance. In this study, we empirically investigate this issue and uncover a critical phenomenon: downstream neural networks often exploit spurious distinctions between real and synth
8#
發(fā)表于 2025-3-22 23:50:56 | 只看該作者
9#
發(fā)表于 2025-3-23 05:08:12 | 只看該作者
10#
發(fā)表于 2025-3-23 09:20:24 | 只看該作者
,Translating Simulation Images to?X-Ray Images via?Multi-scale Semantic Matching,ators to the real world remains an open problem. The key challenge is the virtual environments are usually not realistically simulated, especially the simulation images. In this paper, we propose a new method to translate simulation images from an endovascular simulator to X-ray images. Previous ima
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 18:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
定远县| 泌阳县| 丹巴县| 平罗县| 卢氏县| 聂荣县| 商洛市| 台北县| 新绛县| 连平县| 简阳市| 重庆市| 安塞县| 合作市| 抚宁县| 阿拉善右旗| 望都县| 大洼县| 南郑县| 罗源县| 元氏县| 郴州市| 昔阳县| 措勤县| 新沂市| 民乐县| 荔浦县| 南皮县| 蚌埠市| 西畴县| 泗阳县| 安化县| 黔西| 浦城县| 自贡市| 赤城县| 霍山县| 确山县| 子长县| 博湖县| 文水县|