找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamo and Dynamics, a Mathematical Challenge; P. Chossat,D. Ambruster,I. Oprea (Faculty of Mathe Book 2001 Springer Science+Business Medi

[復(fù)制鏈接]
樓主: Coolidge
51#
發(fā)表于 2025-3-30 08:35:15 | 只看該作者
52#
發(fā)表于 2025-3-30 16:09:32 | 只看該作者
53#
發(fā)表于 2025-3-30 17:09:21 | 只看該作者
54#
發(fā)表于 2025-3-30 20:55:42 | 只看該作者
Jaya R. Soneji,Madhugiri Nageswara Raot [., ., ., .] and more realistic geometries can be easily studied numerically [6]. However, most flows of liquid metal are fully turbulent before reaching the dynamo threshold: indeed, the magnetic Prandtl number, . = μ.σν, where μ. is the magnetic permeability of vacuum, σ is the electric conducti
55#
發(fā)表于 2025-3-31 03:12:07 | 只看該作者
https://doi.org/10.1007/978-3-642-20447-0instability has been studied experimentally by Faller [.] and Caldwell & Van Atta [.], and numerically by Faller & Kaylor [.] , Lilly [.], Melander [.] and Ponty et al. [.]. The linear and nonlinear behaviour of Ekman- Couette instabilities in a plane layer has been discussed by Hoffmann et al. [.].
56#
發(fā)表于 2025-3-31 07:33:17 | 只看該作者
Jaya R. Soneji,Madhugiri Nageswara Raold a dynamo? We present eight variations of a flow motivated by the s2t2 flow numerically studied by Dudley and James [.]. Pulse decay measurements of an externally applied magnetic field are used to quantify the approach to transition to dynamo action.
57#
發(fā)表于 2025-3-31 12:39:16 | 只看該作者
https://doi.org/10.1007/978-3-642-20447-0 magnetic field, the dielectrophoretic force can be used to produce a central force field under microgravity conditions. In a space experiment, currently under construction, thermal convection in a rotating spherical gap with heated inner sphere and cooled outer sphere will be visualized by a Wollas
58#
發(fā)表于 2025-3-31 17:21:27 | 只看該作者
59#
發(fā)表于 2025-3-31 20:38:00 | 只看該作者
60#
發(fā)表于 2025-4-1 00:28:08 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 12:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
剑川县| SHOW| 永顺县| 土默特右旗| 策勒县| 安庆市| 搜索| 鱼台县| 北海市| 巨野县| 庄河市| 朝阳县| 清涧县| 桂东县| 湖口县| 佛坪县| 丰城市| 葵青区| 五莲县| 独山县| 龙山县| 苍溪县| 昌黎县| 修武县| 麻城市| 青海省| 广饶县| 乃东县| 九台市| 武威市| 怀仁县| 秭归县| 禹城市| 萝北县| 沅陵县| 来安县| 应城市| 崇明县| 灵台县| 南溪县| 个旧市|