找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamics of Extremal Black Holes; Stefanos Aretakis Book 2018 The Author(s) 2018 Einstein equations.Extremal Reissner-Nordstrom black hole

[復(fù)制鏈接]
樓主: 空格
11#
發(fā)表于 2025-3-23 09:47:32 | 只看該作者
12#
發(fā)表于 2025-3-23 16:15:12 | 只看該作者
Introduction to General Relativity and Black Hole DynamicsIn this Chapter we provide the general framework for curved spaces and introduce the notions of Lorentzian geometry which are necessary for understanding the mathematical aspects of general relativity and black hole dynamics. We also present rigorous results on the asymptotics of linear perturbations for sub-extremal black holes.
13#
發(fā)表于 2025-3-23 18:42:42 | 只看該作者
Extremal Reissner–Nordstr?m Black HolesIn this Chapter we thoroughly review the geometry of extremal Reissner–Nordstr?m black holes. We also present the main results on the asymptotics of linear perturbations on such backgrounds.
14#
發(fā)表于 2025-3-24 00:13:54 | 只看該作者
15#
發(fā)表于 2025-3-24 02:52:18 | 只看該作者
16#
發(fā)表于 2025-3-24 08:18:21 | 只看該作者
A Theory of Conservation Laws on Null HypersurfacesIn this Chapter we present a theory of conservation laws on null hypersurfaces in general Lorentzian manifolds. These conservation laws are a generalization of the conservation laws on extremal event horizons. We also review their relevance to the characteristic gluing problem and provide necessary and sufficient conditions for their existence.
17#
發(fā)表于 2025-3-24 12:49:08 | 只看該作者
18#
發(fā)表于 2025-3-24 16:01:43 | 只看該作者
https://doi.org/10.1007/978-3-319-95183-6Einstein equations; Extremal Reissner-Nordstrom black holes; Extremal Kerr black holes; Lorentzian geom
19#
發(fā)表于 2025-3-24 23:03:47 | 只看該作者
20#
發(fā)表于 2025-3-25 02:27:01 | 只看該作者
SpringerBriefs in Mathematical Physicshttp://image.papertrans.cn/e/image/284076.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 04:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
葫芦岛市| 赤峰市| 湖北省| 普定县| 拉萨市| 乌审旗| 新郑市| 贡嘎县| 陇西县| 新乐市| 砚山县| 延川县| 哈尔滨市| 邯郸县| 横峰县| 安平县| 江安县| 永昌县| 文成县| 白朗县| 乌拉特前旗| 通州区| 沽源县| 瓦房店市| 蒙城县| 丹巴县| 慈利县| 太保市| 通榆县| 安吉县| 威远县| 江津市| 汉中市| 昭平县| 介休市| 顺义区| 和平县| 巫山县| 甘孜| 明溪县| 屏东市|