找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamics and Bifurcations; Jack K. Hale,Hüseyin Ko?ak Textbook 1991 Springer-Verlag New York, Inc. 1991 Eigenvalue.bifurcation.difference

[復(fù)制鏈接]
樓主: 炸彈
11#
發(fā)表于 2025-3-23 11:07:25 | 只看該作者
In the Presence of Purely Imaginary Eigenvaluese the linearized vector field has purely imaginary eigenvalues. Using polar coordinates, we capture the dynamics of such a system in the neighborhood of the equilibrium point in terms of the dynamics of an appropriate nonautonomous scalar differentia] equation with periodic coefficients. For the ana
12#
發(fā)表于 2025-3-23 14:11:25 | 只看該作者
13#
發(fā)表于 2025-3-23 21:48:46 | 只看該作者
All Planar Things Consideredé-Andronov-Hopf, and breaking homoclinic loops and saddle connections. It is natural to ponder when, if ever, we will stop adding to the list and produce a complete catalog of all possible bifurcations. In this chapter, we indeed provide such a list for “generic” bifurcations of planar vector fields
14#
發(fā)表于 2025-3-24 01:16:59 | 只看該作者
15#
發(fā)表于 2025-3-24 06:24:23 | 只看該作者
Planar Mapsd bifurcations of planar maps. Our motives for delving into planar maps arc akin to the ones for studying scalar maps; namely, as numerical approximations of solutions of differential equations or as Poincaré maps. We begin our exposition with an introduction to the dynamics of linear planar maps. T
16#
發(fā)表于 2025-3-24 09:03:45 | 只看該作者
17#
發(fā)表于 2025-3-24 12:15:07 | 只看該作者
https://doi.org/10.1007/978-1-4612-4426-4Eigenvalue; bifurcation; difference equation; dynamical systems; stability
18#
發(fā)表于 2025-3-24 15:18:06 | 只看該作者
19#
發(fā)表于 2025-3-24 22:50:58 | 只看該作者
Decline of the Yangtze River Civilization from technical complications, the setting is one-dimensional—the scalar autonomous differential equations. Despite their simplicity, these concepts are central to our subject and reappear in various incarnations throughout the book. Following a collection of examples, we first state a theorem on th
20#
發(fā)表于 2025-3-25 00:49:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 14:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
内黄县| 介休市| 炎陵县| 甘德县| 兴安县| 香格里拉县| 富宁县| 广平县| 阿合奇县| 淮南市| 天水市| 西和县| 文安县| 浪卡子县| 遵义县| 镇江市| 德令哈市| 武平县| 龙井市| 墨江| 获嘉县| 和田县| 新密市| 沙湾县| 上饶县| 新宾| 开原市| 黄陵县| 海林市| 乐业县| 花莲市| 土默特右旗| 扬中市| 宁陵县| 丹棱县| 容城县| 舞钢市| 长丰县| 大城县| 大兴区| 永年县|