找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamics Reported; Expositions in Dynam Christopher K. R. T. Jones,Urs Kirchgraber,Hans-Ot Book 1996 Springer-Verlar Berlin Heidelberg 1996

[復制鏈接]
樓主: frustrate
11#
發(fā)表于 2025-3-23 13:05:13 | 只看該作者
Adversary of the Queen’s Adversariesear the homoclinic orbit is determined asymptotically by a reduced system on the center manifold. The method is applied to cases where the center manifold is one- or two-dimensional. When the center manifold is one-dimensional, we can obtain all the solutions near the homoclinic orbit. When a Hopf b
12#
發(fā)表于 2025-3-23 15:08:59 | 只看該作者
https://doi.org/10.1057/9780230389083Schr?dinger equation, a perturbation which contains damping and driving terms. Specifically, we study, both analytically and numerically, homoclinic and chaotic behavior in a two mode ode truncation. First, we summarize recent results of numerical experiments which establish the presence of irregula
13#
發(fā)表于 2025-3-23 20:05:06 | 只看該作者
14#
發(fā)表于 2025-3-24 01:23:48 | 只看該作者
Dynamics Reported978-3-642-79931-0Series ISSN 0936-6040 Series E-ISSN 2942-8548
15#
發(fā)表于 2025-3-24 04:55:27 | 只看該作者
16#
發(fā)表于 2025-3-24 07:19:14 | 只看該作者
Feedback Stabilizability of Time-Periodic Parabolic Equations,e fact that they have served as models for the evolution of systems arising in physics, chemistry, biology and various other disciplines. However, the traditional topics in the theory of differential equations do not encompass many important problems which fall into the realm of what is today known
17#
發(fā)表于 2025-3-24 14:40:14 | 只看該作者
18#
發(fā)表于 2025-3-24 16:28:23 | 只看該作者
Homoclinic Orbits in a Four Dimensional Model of a Perturbed NLS Equation: A Geometric Singular PerSchr?dinger equation, a perturbation which contains damping and driving terms. Specifically, we study, both analytically and numerically, homoclinic and chaotic behavior in a two mode ode truncation. First, we summarize recent results of numerical experiments which establish the presence of irregula
19#
發(fā)表于 2025-3-24 19:29:40 | 只看該作者
20#
發(fā)表于 2025-3-25 00:55:26 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 05:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
龙门县| 安平县| 马边| 漯河市| 巴青县| 溧水县| 扬州市| 兴安盟| 灵丘县| 塔河县| 琼海市| 沾化县| 阜南县| 澄迈县| 六盘水市| 彝良县| 金门县| 临湘市| 德兴市| 突泉县| 英吉沙县| 乌拉特中旗| 彭泽县| 甘德县| 吴忠市| 泉州市| 聂拉木县| 洛扎县| 三明市| 施甸县| 增城市| 额尔古纳市| 达拉特旗| 崇文区| 合阳县| 福安市| 武宣县| 株洲市| 乳源| 奉新县| 洛扎县|