找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamics Reported; Urs Kirchgraber,Hans-Otto Walther Textbook 1988 Springer Fachmedien Wiesbaden 1988 Algorithmen.Dynamik.Systemtheorie.dy

[復(fù)制鏈接]
查看: 20793|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:52:28 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Dynamics Reported
編輯Urs Kirchgraber,Hans-Otto Walther
視頻videohttp://file.papertrans.cn/284/283937/283937.mp4
叢書(shū)名稱Dynamics Reported. New Series
圖書(shū)封面Titlebook: Dynamics Reported;  Urs Kirchgraber,Hans-Otto Walther Textbook 1988 Springer Fachmedien Wiesbaden 1988 Algorithmen.Dynamik.Systemtheorie.dy
出版日期Textbook 1988
關(guān)鍵詞Algorithmen; Dynamik; Systemtheorie; dynamische Systeme
版次1
doihttps://doi.org/10.1007/978-3-322-96656-8
isbn_softcover978-3-519-02150-6
isbn_ebook978-3-322-96656-8Series ISSN 0936-6040 Series E-ISSN 2942-8548
issn_series 0936-6040
copyrightSpringer Fachmedien Wiesbaden 1988
The information of publication is updating

書(shū)目名稱Dynamics Reported影響因子(影響力)




書(shū)目名稱Dynamics Reported影響因子(影響力)學(xué)科排名




書(shū)目名稱Dynamics Reported網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Dynamics Reported網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Dynamics Reported被引頻次




書(shū)目名稱Dynamics Reported被引頻次學(xué)科排名




書(shū)目名稱Dynamics Reported年度引用




書(shū)目名稱Dynamics Reported年度引用學(xué)科排名




書(shū)目名稱Dynamics Reported讀者反饋




書(shū)目名稱Dynamics Reported讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:53:56 | 只看該作者
An Algorithmic Approach for Solving Singularly Perturbed Initial Value Problems,dations. For a general survey the reader is referred to the books by Cole [3], Eckhaus [5], [6], Kaplun [15], O’Malley [27], Van Dyke [32], Wasow [35] and to the articles by Fraenkel [10], Hoppensteadt [14], Kevorkian [16], Lagerstrom and Casten [17] and Vasil’eva [33], [34]. A good deal of work in
板凳
發(fā)表于 2025-3-22 04:18:27 | 只看該作者
Exponential Dichotomies, the Shadowing Lemma and Transversal Homoclinic Points,here is a compact invariant set on which the action of some iterate of the diffeomorphism is topologically conjugate to the action of the .. One immediate consequence of this is Birkhoff’s result that the diffeomorphism has infinitely many periodic points. It also turns out that nearby diffeomorphis
地板
發(fā)表于 2025-3-22 04:48:19 | 只看該作者
Wolfgang Grundmann,Klaus Schütteldent solutions. We say that . connects to ., if there exists an orbit .(., .) of (1.1), (1.2) such that . i.e. .(., ·) is a heteroclinic orbit connecting . to .. In this report we address the following question:.(*) Given ., which stationary solutions . does it connect to?
5#
發(fā)表于 2025-3-22 09:31:51 | 只看該作者
6#
發(fā)表于 2025-3-22 15:59:28 | 只看該作者
Wolfgang Grundmann,Klaus Schüttelhere is a compact invariant set on which the action of some iterate of the diffeomorphism is topologically conjugate to the action of the .. One immediate consequence of this is Birkhoff’s result that the diffeomorphism has infinitely many periodic points. It also turns out that nearby diffeomorphis
7#
發(fā)表于 2025-3-22 20:24:28 | 只看該作者
8#
發(fā)表于 2025-3-22 21:48:49 | 只看該作者
https://doi.org/10.1007/978-3-322-96656-8Algorithmen; Dynamik; Systemtheorie; dynamische Systeme
9#
發(fā)表于 2025-3-23 05:12:55 | 只看該作者
10#
發(fā)表于 2025-3-23 07:09:04 | 只看該作者
Connecting orbits in scalar reaction diffusion equations,dent solutions. We say that . connects to ., if there exists an orbit .(., .) of (1.1), (1.2) such that . i.e. .(., ·) is a heteroclinic orbit connecting . to .. In this report we address the following question:.(*) Given ., which stationary solutions . does it connect to?
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 21:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
全州县| 定兴县| 南川市| 海林市| 辽宁省| 交城县| 赤城县| 陇西县| 射阳县| 元氏县| 禄丰县| 祥云县| 涟源市| 枣阳市| 珲春市| 鹤岗市| 涞水县| 兴安县| 塔河县| 西藏| 岐山县| 赤壁市| 永康市| 宁河县| 海口市| 明水县| 宁城县| 富平县| 黄冈市| 绥德县| 微山县| 陆良县| 四平市| 汕尾市| 白银市| 临朐县| 库车县| 闽清县| 云南省| 和静县| 东台市|