找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamically Coupled Rigid Body-Fluid Flow Systems; Banavara N. Shashikanth Book 2021 Springer Nature Switzerland AG 2021 dynamically coupl

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 10:43:55 | 只看該作者
Banavara N. ShashikanthPresents fluid-structure interaction problems from a modern nonlinear dynamics and control perspective.Provides theoretical models for the rapidly growing field of biomechanical and biomimetic locomot
12#
發(fā)表于 2025-3-23 13:55:35 | 只看該作者
13#
發(fā)表于 2025-3-23 20:33:35 | 只看該作者
The Addition of Vortices,discussed. The Euler–Lagrange equations based on the degenerate Lagrangian proposed by Chapman (J Math Phys 19:1988–1992, 1978) for point vortices are also discussed and extended to the vortex rings model.
14#
發(fā)表于 2025-3-24 00:15:57 | 只看該作者
15#
發(fā)表于 2025-3-24 03:12:12 | 只看該作者
16#
發(fā)表于 2025-3-24 07:34:15 | 只看該作者
sicists and engineers with a background in Lagrangian and Hamiltonian mechanics and theoretical fluid mechanics. It includes a brief introductory overview of geometric mechanics in the appendix..978-3-030-82648-2978-3-030-82646-8
17#
發(fā)表于 2025-3-24 14:45:10 | 只看該作者
18#
發(fā)表于 2025-3-24 17:57:26 | 只看該作者
Book 2021d Hamiltonian mechanics. It compiles theoretical investigations on the topic of dynamically coupled systems using a framework grounded in Kirchhoff’s equations. The text achieves a balance between geometric mechanics, or the modern theories of reduction of Lagrangian and Hamiltonian systems, and cla
19#
發(fā)表于 2025-3-24 22:06:23 | 只看該作者
The Addition of Vortices,discussed. The Euler–Lagrange equations based on the degenerate Lagrangian proposed by Chapman (J Math Phys 19:1988–1992, 1978) for point vortices are also discussed and extended to the vortex rings model.
20#
發(fā)表于 2025-3-25 02:13:11 | 只看該作者
6樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 06:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
镇远县| 新蔡县| 沾益县| 河津市| 游戏| 城市| 社会| 郧西县| 屏东县| 静海县| 辰溪县| 海宁市| 开平市| 新巴尔虎右旗| 金堂县| 南开区| 石柱| 汤阴县| 三河市| 平舆县| 丹江口市| 茂名市| 全椒县| 汨罗市| 达孜县| 博乐市| 德令哈市| 通道| 筠连县| 南江县| 资兴市| 什邡市| 巩义市| 湘潭市| 闵行区| 商城县| 旺苍县| 榆社县| 金堂县| 黑山县| 德阳市|