找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamical Systems of Algebraic Origin; Klaus Schmidt Book 1995 Birkh?user Verlag 1995 Group Theory.Lie groups

[復(fù)制鏈接]
查看: 25151|回復(fù): 41
樓主
發(fā)表于 2025-3-21 16:35:07 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Dynamical Systems of Algebraic Origin
編輯Klaus Schmidt
視頻videohttp://file.papertrans.cn/284/283889/283889.mp4
叢書名稱Progress in Mathematics
圖書封面Titlebook: Dynamical Systems of Algebraic Origin;  Klaus Schmidt Book 1995 Birkh?user Verlag 1995 Group Theory.Lie groups
描述Although the study of dynamical systems is mainly concerned with single trans- formations and one-parameter flows (i. e. with actions of Z, N, JR, or JR+), er- godic theory inherits from statistical mechanics not only its name, but also an obligation to analyze spatially extended systems with multi-dimensional sym- metry groups. However, the wealth of concrete and natural examples, which has contributed so much to the appeal and development of classical dynamics, is noticeably absent in this more general theory. A remarkable exception is provided by a class of geometric actions of (discrete subgroups of) semi-simple Lie groups, which have led to the discovery of one of the most striking new phenomena in multi-dimensional ergodic theory: under suitable circumstances orbit equivalence of such actions implies not only measurable conjugacy, but the conjugating map itself has to be extremely well behaved. Some of these rigidity properties are inherited by certain abelian subgroups of these groups, but the very special nature of the actions involved does not allow any general conjectures about actions of multi-dimensional abelian groups. Beyond commuting group rotations, commuting toral
出版日期Book 1995
關(guān)鍵詞Group Theory; Lie groups
版次1
doihttps://doi.org/10.1007/978-3-0348-9236-0
isbn_softcover978-3-0348-9957-4
isbn_ebook978-3-0348-9236-0Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightBirkh?user Verlag 1995
The information of publication is updating

書目名稱Dynamical Systems of Algebraic Origin影響因子(影響力)




書目名稱Dynamical Systems of Algebraic Origin影響因子(影響力)學(xué)科排名




書目名稱Dynamical Systems of Algebraic Origin網(wǎng)絡(luò)公開度




書目名稱Dynamical Systems of Algebraic Origin網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Dynamical Systems of Algebraic Origin被引頻次




書目名稱Dynamical Systems of Algebraic Origin被引頻次學(xué)科排名




書目名稱Dynamical Systems of Algebraic Origin年度引用




書目名稱Dynamical Systems of Algebraic Origin年度引用學(xué)科排名




書目名稱Dynamical Systems of Algebraic Origin讀者反饋




書目名稱Dynamical Systems of Algebraic Origin讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:43:26 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:14:47 | 只看該作者
地板
發(fā)表于 2025-3-22 08:10:44 | 只看該作者
5#
發(fā)表于 2025-3-22 10:11:58 | 只看該作者
Zero entropy,phisms of a compact, abelian group . to various subgroups Г ? ?.. If . 0, then .) may be positive (even infinite) for certain subgroups Г ? ?. of rank .. For a ?.-action of the form ., where . ? ?. is a prime ideal, this dependence of entropy on the rank of 0413involves the number .(.) introduced in
6#
發(fā)表于 2025-3-22 16:41:44 | 只看該作者
7#
發(fā)表于 2025-3-22 19:45:16 | 只看該作者
0743-1643 N, JR, or JR+), er- godic theory inherits from statistical mechanics not only its name, but also an obligation to analyze spatially extended systems with multi-dimensional sym- metry groups. However, the wealth of concrete and natural examples, which has contributed so much to the appeal and develop
8#
發(fā)表于 2025-3-23 01:05:11 | 只看該作者
Zweck und Ziele der Wirtschaftsinformatik,mical properties, there is an abundance of examples of interesting ?.-actions by automorphisms of compact abelian groups. In this section we introduce a general formalism for the investigation of such actions which will also give us a systematic approach to constructing actions with specified properties.
9#
發(fā)表于 2025-3-23 02:38:48 | 只看該作者
10#
發(fā)表于 2025-3-23 06:17:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 11:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
余干县| 广昌县| 安龙县| 贡嘎县| 宜宾市| 平远县| 白河县| 额济纳旗| 汉寿县| 类乌齐县| 邛崃市| 祁阳县| 资溪县| 福州市| 马鞍山市| 翁牛特旗| 吉林省| 历史| 乐山市| 涡阳县| 治多县| 梁平县| 舟山市| 金昌市| 邵武市| 肃南| 扬中市| 望谟县| 抚顺市| 兴文县| 康乐县| 井冈山市| 丹寨县| 自治县| 灌云县| 汾西县| 土默特左旗| 陵川县| 临猗县| 正蓝旗| 洛浦县|