找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamical Systems and Chaos; Henk Broer,Floris Takens Textbook 2011 Springer Science+Business Media, LLC 2011 Bifurcation theory.Chaotic D

[復(fù)制鏈接]
查看: 28245|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:24:39 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Dynamical Systems and Chaos
編輯Henk Broer,Floris Takens
視頻videohttp://file.papertrans.cn/284/283876/283876.mp4
概述Authors are pioneers in dynamical systems.Offers a fresh, modern perspective.Highly illustrated with many exercises accessible.
叢書名稱Applied Mathematical Sciences
圖書封面Titlebook: Dynamical Systems and Chaos;  Henk Broer,Floris Takens Textbook 2011 Springer Science+Business Media, LLC 2011 Bifurcation theory.Chaotic D
描述Over the last four decades there has been extensive development in the theory of dynamical systems. This book aims at a wide audience where the first four chaptershave been used for an undergraduate course in Dynamical Systems. Material from the last two chapters and from the appendices has been used quite a lot for master and PhD courses. All chapters are concluded by an exercise section.The book is also directed towards researchers, where one of the challenges is to help applied researchers acquire background for a better understanding of the data that computer simulation or experiment may provide them with the development of the theory.
出版日期Textbook 2011
關(guān)鍵詞Bifurcation theory; Chaotic Dynamics; Dynamical Systems; Time series analysis; periodic and quasi-period
版次1
doihttps://doi.org/10.1007/978-1-4419-6870-8
isbn_softcover978-1-4614-2712-4
isbn_ebook978-1-4419-6870-8Series ISSN 0066-5452 Series E-ISSN 2196-968X
issn_series 0066-5452
copyrightSpringer Science+Business Media, LLC 2011
The information of publication is updating

書目名稱Dynamical Systems and Chaos影響因子(影響力)




書目名稱Dynamical Systems and Chaos影響因子(影響力)學(xué)科排名




書目名稱Dynamical Systems and Chaos網(wǎng)絡(luò)公開度




書目名稱Dynamical Systems and Chaos網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Dynamical Systems and Chaos被引頻次




書目名稱Dynamical Systems and Chaos被引頻次學(xué)科排名




書目名稱Dynamical Systems and Chaos年度引用




書目名稱Dynamical Systems and Chaos年度引用學(xué)科排名




書目名稱Dynamical Systems and Chaos讀者反饋




書目名稱Dynamical Systems and Chaos讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:58:29 | 只看該作者
0066-5452 four decades there has been extensive development in the theory of dynamical systems. This book aims at a wide audience where the first four chaptershave been used for an undergraduate course in Dynamical Systems. Material from the last two chapters and from the appendices has been used quite a lot
板凳
發(fā)表于 2025-3-22 00:34:57 | 只看該作者
Textbook 2011four chaptershave been used for an undergraduate course in Dynamical Systems. Material from the last two chapters and from the appendices has been used quite a lot for master and PhD courses. All chapters are concluded by an exercise section.The book is also directed towards researchers, where one o
地板
發(fā)表于 2025-3-22 04:53:11 | 只看該作者
5#
發(fā)表于 2025-3-22 10:29:57 | 只看該作者
https://doi.org/10.1007/978-1-4419-6870-8Bifurcation theory; Chaotic Dynamics; Dynamical Systems; Time series analysis; periodic and quasi-period
6#
發(fā)表于 2025-3-22 15:55:54 | 只看該作者
7#
發(fā)表于 2025-3-22 19:21:37 | 只看該作者
8#
發(fā)表于 2025-3-22 23:03:12 | 只看該作者
Henk Broer,Floris TakensAuthors are pioneers in dynamical systems.Offers a fresh, modern perspective.Highly illustrated with many exercises accessible.
9#
發(fā)表于 2025-3-23 03:41:32 | 只看該作者
10#
發(fā)表于 2025-3-23 09:15:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 13:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宿州市| 尤溪县| 沙坪坝区| 巩义市| 通渭县| 桃园市| 义马市| 二连浩特市| 留坝县| 连城县| 甘德县| 武平县| 东平县| 青川县| 开远市| 阳原县| 乐亭县| 马边| 郓城县| 六枝特区| 威远县| 行唐县| 马公市| 泾阳县| 丰宁| 千阳县| 锡林浩特市| 沙雅县| 都昌县| 慈利县| 方城县| 东阳市| 新兴县| 剑阁县| 繁昌县| 奉新县| 建瓯市| 五莲县| 公主岭市| 威远县| 共和县|