找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamical Systems X; General Theory of Vo V. V. Kozlov Book 2003 Springer-Verlag Berlin Heidelberg 2003 Hamilton equations.Hamilton-Jacobi

[復(fù)制鏈接]
查看: 11350|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:59:12 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Dynamical Systems X
副標(biāo)題General Theory of Vo
編輯V. V. Kozlov
視頻videohttp://file.papertrans.cn/284/283874/283874.mp4
概述Well-known first-rate author.Treats a major topic in mathematical physics.Includes supplementary material:
叢書名稱Encyclopaedia of Mathematical Sciences
圖書封面Titlebook: Dynamical Systems X; General Theory of Vo V. V. Kozlov Book 2003 Springer-Verlag Berlin Heidelberg 2003 Hamilton equations.Hamilton-Jacobi
描述The English teach mechanics as an experimental science, while on the Continent, it has always been considered a more deductive and a priori science. Unquestionably, the English are right. * H. Poincare, Science and Hypothesis Descartes, Leibnitz, and Newton As is well known, the basic principles of dynamics were stated by New- ton in his famous work Philosophiae Naturalis Principia Mathematica, whose publication in 1687 was paid for by his friend, the astronomer Halley. In essence, this book was written with a single purpose: to prove the equivalence of Kepler‘s laws and the assumption, suggested to Newton by Hooke, that the acceleration of a planet is directed toward the center of the Sun and decreases in inverse proportion to the square of the distance between the planet and the Sun. For this, Newton needed to systematize the principles of dynamics (which is how Newton‘s famous laws appeared) and to state the "theory of fluxes" (analysis of functions of one variable). The principle of the equality of an action and a counteraction and the inverse square law led Newton to the theory of gravitation, the interaction at a distance. In addition, New- ton discussed a large number of pro
出版日期Book 2003
關(guān)鍵詞Hamilton equations; Hamilton-Jacobi method; Stability theory; classical mechanics; hydrodynamics; quantum
版次1
doihttps://doi.org/10.1007/978-3-662-06800-7
isbn_softcover978-3-642-07584-1
isbn_ebook978-3-662-06800-7Series ISSN 0938-0396
issn_series 0938-0396
copyrightSpringer-Verlag Berlin Heidelberg 2003
The information of publication is updating

書目名稱Dynamical Systems X影響因子(影響力)




書目名稱Dynamical Systems X影響因子(影響力)學(xué)科排名




書目名稱Dynamical Systems X網(wǎng)絡(luò)公開度




書目名稱Dynamical Systems X網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Dynamical Systems X被引頻次




書目名稱Dynamical Systems X被引頻次學(xué)科排名




書目名稱Dynamical Systems X年度引用




書目名稱Dynamical Systems X年度引用學(xué)科排名




書目名稱Dynamical Systems X讀者反饋




書目名稱Dynamical Systems X讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:50:19 | 只看該作者
Hydrodynamics, Geometric Optics, and Classical Mechanics,rticles of a medium in the three-dimensional Euclidean space .. = {.} and .(., .) is a solenoidal vector field, div . = 0. The physical meaning of the field u is determined by the specific problem under investigation. Integral curves of the vector field . (at a fixed instant .) are called ..
板凳
發(fā)表于 2025-3-22 03:28:25 | 只看該作者
V. V. KozlovWell-known first-rate author.Treats a major topic in mathematical physics.Includes supplementary material:
地板
發(fā)表于 2025-3-22 06:21:32 | 只看該作者
Encyclopaedia of Mathematical Scienceshttp://image.papertrans.cn/e/image/283874.jpg
5#
發(fā)表于 2025-3-22 09:32:14 | 只看該作者
6#
發(fā)表于 2025-3-22 13:29:42 | 只看該作者
7#
發(fā)表于 2025-3-22 20:52:28 | 只看該作者
8#
發(fā)表于 2025-3-22 21:12:56 | 只看該作者
9#
發(fā)表于 2025-3-23 02:52:06 | 只看該作者
10#
發(fā)表于 2025-3-23 06:31:32 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 14:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
灌阳县| 广宗县| 南宫市| 莒南县| 东阿县| 呼玛县| 临清市| 荃湾区| 和平区| 利辛县| 淅川县| 延边| 临沂市| 屯留县| 翁牛特旗| 临清市| 交城县| 枞阳县| 上杭县| 丽水市| 泰来县| 太谷县| 巩留县| 绥江县| 柳江县| 金华市| 南通市| 屏东市| 天等县| 二连浩特市| 剑阁县| 崇义县| 务川| 公安县| 仲巴县| 鄢陵县| 鄯善县| 丰顺县| 长子县| 沅江市| 康马县|