找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamical Systems VII; Integrable Systems N V. I. Arnol’d,S. P. Novikov Book 1994 Springer-Verlag Berlin Heidelberg 1994 Hamiltonian System

[復(fù)制鏈接]
樓主: 吸收
11#
發(fā)表于 2025-3-23 13:05:23 | 只看該作者
,Glas und seine vielf?ltigen Anwendungen,A pair (.) consisting of a 2.-dimensional manifold . together with a closed 2-form . is called a . if the form . is nondegenerate, i.e. if .. = . ∧ · ... · . ? 0.
12#
發(fā)表于 2025-3-23 16:32:39 | 只看該作者
IntroductionA nonholonomic manifold is a smooth manifold equipped with a smooth distribution. This distribution is in general nonintegrable. The term ‘holonomic’ is due to Hertz and means ‘universal’, ‘integral’, ‘integrable’ (literally, . -entire, . - law). ‘Nonholonomic’ is therefore a synonym of ‘nonintegrable’.
13#
發(fā)表于 2025-3-23 18:13:08 | 只看該作者
14#
發(fā)表于 2025-3-24 01:22:25 | 只看該作者
Integrable Systems and Finite-Dimensional Lie AlgebrasIn this survey we consider integrable systems whose construction makes use of root systems of simple (usually finite-dimensional) Lie algebras.
15#
發(fā)表于 2025-3-24 02:58:11 | 只看該作者
16#
發(fā)表于 2025-3-24 06:46:24 | 只看該作者
17#
發(fā)表于 2025-3-24 14:35:02 | 只看該作者
18#
發(fā)表于 2025-3-24 15:02:44 | 只看該作者
Herz, Kreislauf und H?modynamiknomic distribution. The solutions to this problem, the nonholonomic geodesics, satisfy the Euler-Lagrange equations of a conditional problem. They generate a nonholonomic geodesic flow defined on the mixed bundle which is the direct sum of the distribution and its annihilator in the cotangent bundle
19#
發(fā)表于 2025-3-24 21:40:28 | 只看該作者
Intraven?se An?sthetika und Benzodiazepinet-invariant nonholonomic distribution. Our main subject is the study of the nonholonomic geodesic flow (NG-flow), more precisely, of the nonholonomic sphere, of the wave front (Section 1), and of the general dynamical properties of the flow (Section 2). The mixed bundle for Lie groups is the direct
20#
發(fā)表于 2025-3-25 00:34:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 16:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁蒗| 文登市| 瑞安市| 永宁县| 保靖县| 蚌埠市| 肥城市| 密山市| 荥经县| 肥西县| 陆良县| 云林县| 公安县| 九寨沟县| 合阳县| 凌云县| 安平县| 仙桃市| 竹溪县| 泰来县| 临沭县| 赤峰市| 岳阳市| 隆子县| 台北市| 海晏县| 双江| 成安县| 微博| 南溪县| 海南省| 中牟县| 枣庄市| 邯郸市| 宜昌市| 黄大仙区| 邓州市| 搜索| 常宁市| 东兰县| 吉木乃县|