找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamical Systems VII; Integrable Systems N V. I. Arnol’d,S. P. Novikov Book 1994 Springer-Verlag Berlin Heidelberg 1994 Hamiltonian System

[復(fù)制鏈接]
樓主: 吸收
11#
發(fā)表于 2025-3-23 13:05:23 | 只看該作者
,Glas und seine vielf?ltigen Anwendungen,A pair (.) consisting of a 2.-dimensional manifold . together with a closed 2-form . is called a . if the form . is nondegenerate, i.e. if .. = . ∧ · ... · . ? 0.
12#
發(fā)表于 2025-3-23 16:32:39 | 只看該作者
IntroductionA nonholonomic manifold is a smooth manifold equipped with a smooth distribution. This distribution is in general nonintegrable. The term ‘holonomic’ is due to Hertz and means ‘universal’, ‘integral’, ‘integrable’ (literally, . -entire, . - law). ‘Nonholonomic’ is therefore a synonym of ‘nonintegrable’.
13#
發(fā)表于 2025-3-23 18:13:08 | 只看該作者
14#
發(fā)表于 2025-3-24 01:22:25 | 只看該作者
Integrable Systems and Finite-Dimensional Lie AlgebrasIn this survey we consider integrable systems whose construction makes use of root systems of simple (usually finite-dimensional) Lie algebras.
15#
發(fā)表于 2025-3-24 02:58:11 | 只看該作者
16#
發(fā)表于 2025-3-24 06:46:24 | 只看該作者
17#
發(fā)表于 2025-3-24 14:35:02 | 只看該作者
18#
發(fā)表于 2025-3-24 15:02:44 | 只看該作者
Herz, Kreislauf und H?modynamiknomic distribution. The solutions to this problem, the nonholonomic geodesics, satisfy the Euler-Lagrange equations of a conditional problem. They generate a nonholonomic geodesic flow defined on the mixed bundle which is the direct sum of the distribution and its annihilator in the cotangent bundle
19#
發(fā)表于 2025-3-24 21:40:28 | 只看該作者
Intraven?se An?sthetika und Benzodiazepinet-invariant nonholonomic distribution. Our main subject is the study of the nonholonomic geodesic flow (NG-flow), more precisely, of the nonholonomic sphere, of the wave front (Section 1), and of the general dynamical properties of the flow (Section 2). The mixed bundle for Lie groups is the direct
20#
發(fā)表于 2025-3-25 00:34:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 16:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沐川县| 巴彦县| 科技| 江孜县| 巩义市| 资阳市| 玉山县| 伊春市| 合作市| 耒阳市| 东乌珠穆沁旗| 西乌珠穆沁旗| 章丘市| 涟源市| 榆林市| 当涂县| 大姚县| 昆山市| 恭城| 宁乡县| 彰化县| 鲁山县| 双桥区| 大埔区| 华容县| 恭城| 镇坪县| 曲沃县| 金溪县| 沾益县| 阳泉市| 杭锦后旗| 平江县| 万安县| 襄樊市| 潮安县| 米易县| 金昌市| 安国市| 克拉玛依市| 石屏县|