找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamical Systems VII; Integrable Systems N V. I. Arnol’d,S. P. Novikov Book 1994 Springer-Verlag Berlin Heidelberg 1994 Hamiltonian System

[復(fù)制鏈接]
樓主: 吸收
11#
發(fā)表于 2025-3-23 13:05:23 | 只看該作者
,Glas und seine vielf?ltigen Anwendungen,A pair (.) consisting of a 2.-dimensional manifold . together with a closed 2-form . is called a . if the form . is nondegenerate, i.e. if .. = . ∧ · ... · . ? 0.
12#
發(fā)表于 2025-3-23 16:32:39 | 只看該作者
IntroductionA nonholonomic manifold is a smooth manifold equipped with a smooth distribution. This distribution is in general nonintegrable. The term ‘holonomic’ is due to Hertz and means ‘universal’, ‘integral’, ‘integrable’ (literally, . -entire, . - law). ‘Nonholonomic’ is therefore a synonym of ‘nonintegrable’.
13#
發(fā)表于 2025-3-23 18:13:08 | 只看該作者
14#
發(fā)表于 2025-3-24 01:22:25 | 只看該作者
Integrable Systems and Finite-Dimensional Lie AlgebrasIn this survey we consider integrable systems whose construction makes use of root systems of simple (usually finite-dimensional) Lie algebras.
15#
發(fā)表于 2025-3-24 02:58:11 | 只看該作者
16#
發(fā)表于 2025-3-24 06:46:24 | 只看該作者
17#
發(fā)表于 2025-3-24 14:35:02 | 只看該作者
18#
發(fā)表于 2025-3-24 15:02:44 | 只看該作者
Herz, Kreislauf und H?modynamiknomic distribution. The solutions to this problem, the nonholonomic geodesics, satisfy the Euler-Lagrange equations of a conditional problem. They generate a nonholonomic geodesic flow defined on the mixed bundle which is the direct sum of the distribution and its annihilator in the cotangent bundle
19#
發(fā)表于 2025-3-24 21:40:28 | 只看該作者
Intraven?se An?sthetika und Benzodiazepinet-invariant nonholonomic distribution. Our main subject is the study of the nonholonomic geodesic flow (NG-flow), more precisely, of the nonholonomic sphere, of the wave front (Section 1), and of the general dynamical properties of the flow (Section 2). The mixed bundle for Lie groups is the direct
20#
發(fā)表于 2025-3-25 00:34:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 18:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
瓮安县| 恩平市| 永寿县| 鲁山县| 株洲市| 白玉县| 乌鲁木齐市| 龙川县| 土默特左旗| 威信县| 沐川县| 仁寿县| 霍邱县| 陆良县| 阿勒泰市| 本溪市| 定南县| 罗山县| 大连市| 宁城县| 盐津县| 海城市| 云南省| 和政县| 茶陵县| 盘山县| 庆云县| 日土县| 五寨县| 永城市| 郑州市| 嵊泗县| 泰和县| 绥化市| 承德市| 连云港市| 南城县| 永嘉县| 崇明县| 清河县| 大港区|