找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamical Systems Generated by Linear Maps; ?emal B. Doli?anin,Anatolij B. Antonevich Book 2014Latest edition Springer International Publi

[復(fù)制鏈接]
樓主: 減輕
21#
發(fā)表于 2025-3-25 04:09:19 | 只看該作者
22#
發(fā)表于 2025-3-25 10:38:24 | 只看該作者
The Jordan Basis and Special SubspacesIn this chapter Jordan basis and subspaces related to it will be discussed as well as various Jordan cells and basis vectors which play a different role at accidental numeration of separated basis vectors. The theory of subspace related with linear operators has been disposed.
23#
發(fā)表于 2025-3-25 12:01:29 | 只看該作者
24#
發(fā)表于 2025-3-25 16:29:11 | 只看該作者
25#
發(fā)表于 2025-3-25 20:58:58 | 只看該作者
The Action of a Linear Map on the Grassmann ManifoldThe set of subspaces of a given vector space forms the Grassmann manifold, a linear non-singular operator . induces a homeomorphism . of the Grassmann manifold. Let us find the explicit form or this map.
26#
發(fā)表于 2025-3-26 01:15:33 | 只看該作者
The Exterior Algebra and SubspacesOne of the approaches toward investigation of the Grassmann manifolds is based on an embedding of . into a projective space of large dimension, since this can be used to apply results on the action of a linear operator on a projective space. This embedding is achieved with the help of the Grassmann algebra.
27#
發(fā)表于 2025-3-26 07:58:36 | 只看該作者
The Algebraic Approach to the Study of Subspace TrajectoryThe algebraic approach is based on the previously established relations between a .-dimensional subspace . and the corresponding .-vector .
28#
發(fā)表于 2025-3-26 09:32:34 | 只看該作者
29#
發(fā)表于 2025-3-26 16:29:44 | 只看該作者
30#
發(fā)表于 2025-3-26 17:27:14 | 只看該作者
The Subtle Spectral PropertiesAlong with the description of the spectrum of the operator ., i.e., obtaining conditions of invertibility of operators of the form ., some more subtle properties of operators . are interesting in the case when . belongs to the spectrum.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 14:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
五原县| 个旧市| 临朐县| 措美县| 行唐县| 阜南县| 察雅县| 吉林市| 岑巩县| 中山市| 石首市| 襄垣县| 博湖县| 呼伦贝尔市| 林甸县| 广灵县| 墨竹工卡县| 深泽县| 华池县| 稻城县| 儋州市| 宁都县| 桓仁| 衡南县| 衡东县| 博乐市| 阜新市| 岗巴县| 明光市| 梓潼县| 和林格尔县| 辽源市| 麻城市| 稻城县| 崇文区| 石景山区| 长顺县| 富源县| 武山县| 苏州市| 华容县|