找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamical System and Chaos; An Introduction with Rui Dil?o Textbook 2023 The Editor(s) (if applicable) and The Author(s), under exclusive l

[復(fù)制鏈接]
樓主: Traction
11#
發(fā)表于 2025-3-23 13:44:03 | 只看該作者
Alexandra Lindner,Michael StadtelmannWe review elementary results on the geometric theory of Hamiltonian dynamical systems. We discuss the Denjoy theory of circle maps as a preparation for the KAM interpretation of instabilities and resonances of Hamiltonian systems.
12#
發(fā)表于 2025-3-23 15:09:41 | 只看該作者
13#
發(fā)表于 2025-3-23 19:33:33 | 只看該作者
Brigitte Falkenburg,Margaret MorrisonIn this introductory text to celestial mechanics, we review the general problem of . bodies, the Kepler problem, the three-body problem, the restricted three-body problem, the Sitnikov problem and the Keplerian dumbbell, a simple model for the spin-orbit interaction. The existence of chaotic trajectories in the solar system is discussed.
14#
發(fā)表于 2025-3-24 01:44:32 | 只看該作者
Maschinelles Lernen – Roboter in der SchuleWe introduce basic techniques of nonlinear control theory from the perspective of the Pontriaguine maximum principle. We analyse in detail systems from physics, celestial mechanics and macroeconomics.
15#
發(fā)表于 2025-3-24 04:54:53 | 只看該作者
Hamiltonian SystemsWe review elementary results on the geometric theory of Hamiltonian dynamical systems. We discuss the Denjoy theory of circle maps as a preparation for the KAM interpretation of instabilities and resonances of Hamiltonian systems.
16#
發(fā)表于 2025-3-24 09:35:20 | 只看該作者
Synchronisation of?Clocks and?PendulumsWe analyse Huygens’s two-clock system and give conditions for anti-phase and in-phase synchronisation. We prove the robustness of anti-phase synchronisation. We analyse the conditions of anti-phase synchronisation of pendulum systems.
17#
發(fā)表于 2025-3-24 13:00:42 | 只看該作者
Introduction to Celestial MechanicsIn this introductory text to celestial mechanics, we review the general problem of . bodies, the Kepler problem, the three-body problem, the restricted three-body problem, the Sitnikov problem and the Keplerian dumbbell, a simple model for the spin-orbit interaction. The existence of chaotic trajectories in the solar system is discussed.
18#
發(fā)表于 2025-3-24 18:40:16 | 只看該作者
19#
發(fā)表于 2025-3-24 21:08:41 | 只看該作者
https://doi.org/10.1007/978-3-031-25154-2Dynamical chaos theory; Applications of dynamical systems; Celestial mechanics; Centre Manifold; Poincar
20#
發(fā)表于 2025-3-25 00:34:29 | 只看該作者
978-3-031-25156-6The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 14:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
克山县| 同德县| 彰武县| 都安| 平利县| 新竹市| 榆林市| 瓦房店市| 镇巴县| 五河县| 清水河县| 公主岭市| 湖州市| 会东县| 英吉沙县| 滦南县| 鞍山市| 万载县| 金秀| 金平| 澜沧| 兴山县| 娄底市| 北海市| 道孚县| 乐业县| 黄骅市| 甘德县| 岱山县| 苍南县| 彰化市| 巫山县| 聂荣县| 乐昌市| 和田县| 济宁市| 肃宁县| 南昌市| 藁城市| 涿州市| 如东县|