找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamical Chaos in Planetary Systems; Ivan I. Shevchenko Book 2020 Springer Nature Switzerland AG 2020 planetary systems.dynamical chaos.p

[復制鏈接]
樓主: JAZZ
11#
發(fā)表于 2025-3-23 12:01:37 | 只看該作者
12#
發(fā)表于 2025-3-23 15:48:22 | 只看該作者
13#
發(fā)表于 2025-3-23 19:05:03 | 只看該作者
https://doi.org/10.1007/978-3-662-01114-0 analytical methods how Lyapunov timescales can be estimated. The discussed concepts include: Chirikov’s constant, adiabatic chaos, non-adiabatic chaos, Lyapunov exponents in resonance doublets, triplets, and, generally, in resonance multiplets.
14#
發(fā)表于 2025-3-23 23:20:55 | 只看該作者
15#
發(fā)表于 2025-3-24 04:54:01 | 只看該作者
16#
發(fā)表于 2025-3-24 07:53:51 | 只看該作者
17#
發(fā)表于 2025-3-24 12:08:47 | 只看該作者
18#
發(fā)表于 2025-3-24 15:38:45 | 只看該作者
Bernd Bilitewski,Georg H?rdtle,Klaus Marekclear clearing, inner disintegration. Analytical approaches that serve to characterize these effects, in particular, serve for estimating the cleared zone sizes and the clearing timescales, are described and discussed.
19#
發(fā)表于 2025-3-24 19:58:04 | 只看該作者
Waltina Scheumann,Manuel Schifflerm-companion planetary system. We consider potential and actual examples of circum-companion systems and circumbinary systems. Concepts of migration and chaos as system architects, chaotic orbital zones, structure of chaos borders, and the mass parameter threshold for forming the circumbinary chaotic zone are described and discussed.
20#
發(fā)表于 2025-3-25 00:16:26 | 只看該作者
,Ausgew?hlte Rahmenbedingungen, to the 20th one, nothing had seemed to any scientist or philosopher to be less prone to chaos and accident than the repetitive measured motion of the Solar system bodies. In this Chapter, we briefly describe the main nodes of the non-monotonous rise of the dynamical chaos concept in the history of studies of the Solar system dynamics.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 00:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
凤庆县| 柏乡县| 台山市| 克拉玛依市| 赤城县| 延庆县| 原阳县| 集贤县| 正安县| 开江县| 武山县| 合水县| 东丰县| 姚安县| 郧西县| 慈利县| 呼玛县| 丹棱县| 烟台市| 皋兰县| 定远县| 漾濞| 临江市| 青河县| 望奎县| 莒南县| 大港区| 内乡县| 墨竹工卡县| 民和| 屏南县| 青川县| 宁河县| 吴忠市| 绥芬河市| 许昌县| 宜阳县| 连云港市| 昌宁县| 疏勒县| 赤城县|