找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamical Chaos in Planetary Systems; Ivan I. Shevchenko Book 2020 Springer Nature Switzerland AG 2020 planetary systems.dynamical chaos.p

[復制鏈接]
樓主: JAZZ
11#
發(fā)表于 2025-3-23 12:01:37 | 只看該作者
12#
發(fā)表于 2025-3-23 15:48:22 | 只看該作者
13#
發(fā)表于 2025-3-23 19:05:03 | 只看該作者
https://doi.org/10.1007/978-3-662-01114-0 analytical methods how Lyapunov timescales can be estimated. The discussed concepts include: Chirikov’s constant, adiabatic chaos, non-adiabatic chaos, Lyapunov exponents in resonance doublets, triplets, and, generally, in resonance multiplets.
14#
發(fā)表于 2025-3-23 23:20:55 | 只看該作者
15#
發(fā)表于 2025-3-24 04:54:01 | 只看該作者
16#
發(fā)表于 2025-3-24 07:53:51 | 只看該作者
17#
發(fā)表于 2025-3-24 12:08:47 | 只看該作者
18#
發(fā)表于 2025-3-24 15:38:45 | 只看該作者
Bernd Bilitewski,Georg H?rdtle,Klaus Marekclear clearing, inner disintegration. Analytical approaches that serve to characterize these effects, in particular, serve for estimating the cleared zone sizes and the clearing timescales, are described and discussed.
19#
發(fā)表于 2025-3-24 19:58:04 | 只看該作者
Waltina Scheumann,Manuel Schifflerm-companion planetary system. We consider potential and actual examples of circum-companion systems and circumbinary systems. Concepts of migration and chaos as system architects, chaotic orbital zones, structure of chaos borders, and the mass parameter threshold for forming the circumbinary chaotic zone are described and discussed.
20#
發(fā)表于 2025-3-25 00:16:26 | 只看該作者
,Ausgew?hlte Rahmenbedingungen, to the 20th one, nothing had seemed to any scientist or philosopher to be less prone to chaos and accident than the repetitive measured motion of the Solar system bodies. In this Chapter, we briefly describe the main nodes of the non-monotonous rise of the dynamical chaos concept in the history of studies of the Solar system dynamics.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 13:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
泰来县| 和顺县| 大名县| 山阴县| 海南省| 安新县| 江油市| 泰和县| 彩票| 承德县| 大足县| 屏山县| 横峰县| 亚东县| 古蔺县| 随州市| 玉溪市| 德保县| 阳西县| 临泉县| 利川市| 彝良县| 衡阳县| 岳池县| 正蓝旗| 祁阳县| 克拉玛依市| 华阴市| 大连市| 汝阳县| 横山县| 丹巴县| 陕西省| 江城| 泰州市| 芦山县| 收藏| 承德市| 临桂县| 苗栗市| 托克托县|