找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamic Programming for Impulse Feedback and Fast Controls; The Linear Systems C Alexander B. Kurzhanski,Alexander N. Daryin Book 2020 Spri

[復制鏈接]
樓主: oxidation
41#
發(fā)表于 2025-3-28 18:18:39 | 只看該作者
42#
發(fā)表于 2025-3-28 21:55:51 | 只看該作者
Impulse Control Under Uncertaintyare assumed to be unknown but bounded by a given convex set. Once again the key element of the solution is the Principle of Optimality and its infinitesimal counterpart, the related Dynamic Programming Equation, [.]. The corresponding value function may be calculated here as the limit of optimal val
43#
發(fā)表于 2025-3-29 00:53:58 | 只看該作者
State Estimation Under Ordinary Impulsive Inputsres to treat the so-called “observation problem” which is solved here. However, the problem allows two types of settings—the one of guaranteed estimation calculated in advance, namely, before the arrival of the available measurement (as a worst case situation) and the one calculated after its arriva
44#
發(fā)表于 2025-3-29 05:47:08 | 只看該作者
45#
發(fā)表于 2025-3-29 07:30:55 | 只看該作者
State-Constrained Control Under Higher Impulsesimpulses . These restrictions are an analogy of state constraints for systems controlled by ordinary impulses of Chap.?. (see also [., .]). Discussing the problem of optimal control under higher impulses and state constraints we describe it first in terms of the theory of distributions [., .]. indic
46#
發(fā)表于 2025-3-29 12:55:23 | 只看該作者
47#
發(fā)表于 2025-3-29 16:00:43 | 只看該作者
48#
發(fā)表于 2025-3-29 20:11:22 | 只看該作者
49#
發(fā)表于 2025-3-30 01:54:04 | 只看該作者
50#
發(fā)表于 2025-3-30 04:22:39 | 只看該作者
Book 2020atment of uncertaintyin impulse control and the applications of impulse feedback...Of interest to both academics and graduate students in the field of control theory and applications, the book also protects users from common errors?, such as inappropriate solution attempts,?by indicating Hamiltonian
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 08:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
酉阳| 温州市| 蓝山县| 杭州市| 共和县| 梁平县| 阳朔县| 邹城市| 延吉市| 当涂县| 昆山市| 阳泉市| 长顺县| 安平县| 盈江县| 兴和县| 清镇市| 太仆寺旗| 四子王旗| 山阴县| 西和县| 通山县| 轮台县| 兖州市| 凯里市| 同仁县| 根河市| 全州县| 称多县| 乌拉特中旗| 抚顺县| 荥经县| 美姑县| 酉阳| 永登县| 永清县| 黎川县| 鹤山市| 德州市| 霍山县| 四会市|