找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamic Neuroscience; Statistics, Modeling Zhe Chen,Sridevi V. Sarma Book 2018 Springer International Publishing AG 2018 Neural signal proc

[復(fù)制鏈接]
查看: 18033|回復(fù): 53
樓主
發(fā)表于 2025-3-21 16:20:27 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Dynamic Neuroscience
副標(biāo)題Statistics, Modeling
編輯Zhe Chen,Sridevi V. Sarma
視頻videohttp://file.papertrans.cn/284/283684/283684.mp4
概述Presents innovative methodological and algorithmic development in statistics, modeling, control, and signal processing for neural data analysis;.Includes a coherent framework for a broad class of neur
圖書封面Titlebook: Dynamic Neuroscience; Statistics, Modeling Zhe Chen,Sridevi V. Sarma Book 2018 Springer International Publishing AG 2018 Neural signal proc
描述This book shows how to develop efficient quantitative methods to characterize neural data and extra information that reveals underlying dynamics and neurophysiological mechanisms. Written by active experts in the field, it contains an exchange of innovative ideas among researchers at both computational and experimental ends, as well as those at the interface. Authors discuss research challenges and new directions in emerging areas with two goals in mind: to collect recent advances in statistics, signal processing, modeling, and control methods in neuroscience; and to welcome and foster innovative or cross-disciplinary ideas along this line of research and discuss important research issues in neural data analysis. Making use of both tutorial and review materials, this book is written for neural, electrical, and biomedical engineers; computational neuroscientists; statisticians; computer scientists; and clinical engineers.
出版日期Book 2018
關(guān)鍵詞Neural signal processing; Neuronal coding theories; Neural engineering; Neural activity; State-space par
版次1
doihttps://doi.org/10.1007/978-3-319-71976-4
isbn_softcover978-3-030-10139-8
isbn_ebook978-3-319-71976-4
copyrightSpringer International Publishing AG 2018
The information of publication is updating

書目名稱Dynamic Neuroscience影響因子(影響力)




書目名稱Dynamic Neuroscience影響因子(影響力)學(xué)科排名




書目名稱Dynamic Neuroscience網(wǎng)絡(luò)公開度




書目名稱Dynamic Neuroscience網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Dynamic Neuroscience被引頻次




書目名稱Dynamic Neuroscience被引頻次學(xué)科排名




書目名稱Dynamic Neuroscience年度引用




書目名稱Dynamic Neuroscience年度引用學(xué)科排名




書目名稱Dynamic Neuroscience讀者反饋




書目名稱Dynamic Neuroscience讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:02:44 | 只看該作者
Sound,re the nature of trial-to-trail variability, and seek to verify our hypothesis by developing a decoding algorithm that predicts context from spiking data using a model characterizing changes in the full distribution of firing rate structure across trials. We compare this algorithm to another decodin
板凳
發(fā)表于 2025-3-22 04:14:06 | 只看該作者
Martin Kahmann,Roland Kleinknechttes that affect behavior, and (2) identifying neural correlates of stimuli, responses, and states. The framework consists of first constructing state-space models from behavioral data using maximum likelihood methods, and then identifying neural correlates of external stimuli, behavioral responses,
地板
發(fā)表于 2025-3-22 07:11:26 | 只看該作者
Kommunikationsmittel im Strommarktr infer the brain’s intention during adaptation. This decoder significantly improves the speed and accuracy of model adaptation. Moreover, at steady state, the learned point process filter improves performance over the state-of-the-art Kalman filters due to the fast control and feedback rates and th
5#
發(fā)表于 2025-3-22 10:31:28 | 只看該作者
Marktforschung: Beispiel Prepaymentz?hleraid our understanding of the pathological states related to these signals and has the potential to be used in designing bio-inspired pulsatile controllers; immediate applications include understanding normal and pathological neuroendocrine and affective states.
6#
發(fā)表于 2025-3-22 13:33:15 | 只看該作者
7#
發(fā)表于 2025-3-22 19:01:25 | 只看該作者
Matthias Heining,Ralf Schünemannonly predict the networks underlying anesthesia-induced oscillations but also guide experiments to further understand the role of these oscillations in the behavioral states that accompany anesthesia.
8#
發(fā)表于 2025-3-22 23:30:46 | 只看該作者
9#
發(fā)表于 2025-3-23 05:22:00 | 只看該作者
What Can Trial-to-Trial Variability Tell Us? A Distribution-Based Approach to Spike Train Decoding ire the nature of trial-to-trail variability, and seek to verify our hypothesis by developing a decoding algorithm that predicts context from spiking data using a model characterizing changes in the full distribution of firing rate structure across trials. We compare this algorithm to another decodin
10#
發(fā)表于 2025-3-23 07:12:07 | 只看該作者
Characterizing Complex Human Behaviors and Neural Responses Using Dynamic Modelstes that affect behavior, and (2) identifying neural correlates of stimuli, responses, and states. The framework consists of first constructing state-space models from behavioral data using maximum likelihood methods, and then identifying neural correlates of external stimuli, behavioral responses,
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 18:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
红河县| 六安市| 永康市| 丹阳市| 禄劝| 米林县| 边坝县| 高邑县| 康乐县| 仙居县| 泾阳县| 广昌县| 永宁县| 翁牛特旗| 江口县| 镇安县| 盐山县| 吉水县| 乐亭县| 大丰市| 聊城市| 静海县| 闽侯县| 通许县| 呈贡县| 安顺市| 鹿邑县| 临桂县| 建水县| 仙桃市| 府谷县| 武定县| 句容市| 观塘区| 攀枝花市| 广汉市| 漳平市| 斗六市| 岳阳市| 米脂县| 高碑店市|