找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamic Network Representation Based on Latent Factorization of Tensors; Hao Wu,Xuke Wu,Xin Luo Book 2023 The Editor(s) (if applicable) an

[復(fù)制鏈接]
樓主: Disaster
11#
發(fā)表于 2025-3-23 10:38:39 | 只看該作者
12#
發(fā)表于 2025-3-23 16:35:49 | 只看該作者
13#
發(fā)表于 2025-3-23 18:27:02 | 只看該作者
K,ter vision and other fields [1–5]. For a third-order HDI tensor modeling a dynamic network, this book carry out some preliminary research on latent factorization of tensors methods to implement accurate representation for dynamic networks. Further, in real industrial applications, in order to tackle
14#
發(fā)表于 2025-3-24 01:39:33 | 只看該作者
15#
發(fā)表于 2025-3-24 04:14:42 | 只看該作者
https://doi.org/10.1007/978-981-19-8934-6Dynamic network representation; Latent factorization of tensors; High-dimensional and incomplete tenso
16#
發(fā)表于 2025-3-24 08:03:03 | 只看該作者
978-981-19-8933-9The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
17#
發(fā)表于 2025-3-24 13:20:29 | 只看該作者
Hao Wu,Xuke Wu,Xin LuoExposes readers to a novel research perspective regarding dynamic network representation.Presents four dynamic network representation methods based on latent factorization of tensors.Accomplishes accu
18#
發(fā)表于 2025-3-24 15:26:44 | 只看該作者
SpringerBriefs in Computer Sciencehttp://image.papertrans.cn/e/image/283681.jpg
19#
發(fā)表于 2025-3-24 20:54:50 | 只看該作者
20#
發(fā)表于 2025-3-25 02:36:29 | 只看該作者
Multiple Biases-Incorporated Latent Factorization of Tensors,tion on extracting useful knowledge form an HDI tensor. However, existing LFT-based models lack solid consideration for the volatility of dynamic network data, thereby leading to the descent of model representation learning ability. To tackle this problem, this chapter proposes a multiple biases-inc
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 06:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黄骅市| 桑植县| 繁峙县| 凤翔县| 庆安县| 上蔡县| 陆川县| 清流县| 黑龙江省| 婺源县| 北辰区| 石泉县| 郴州市| 香格里拉县| 句容市| 古田县| 营口市| 彝良县| 济阳县| 浠水县| 津南区| 鹿泉市| 卢氏县| 岗巴县| 兴国县| 尉犁县| 株洲市| 宜昌市| 聂拉木县| 缙云县| 雅江县| 南通市| 公安县| 枣庄市| 正安县| 思茅市| 南部县| 托克逊县| 金秀| 射阳县| 乌拉特前旗|