找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamic Impulse Systems; Theory and Applicati S. T. Zavalishchin,A. N. Sesekin Book 1997 Springer Science+Business Media Dordrecht 1997 con

[復(fù)制鏈接]
樓主: Coarctation
11#
發(fā)表于 2025-3-23 11:12:37 | 只看該作者
Discontinuous Solutions to Ordinary Nonlinear Differential Equations in the Space of Functions of B considered. A Cauchy formula for the discontinuous solutions to bilinear systems is obtained. Discontinuous solutions to neutral type nonlinear differential equations are discussed. In particular, we obtain a generalization of Gronwall—Bellman’s lemma for the space of functions of bounded variation.
12#
發(fā)表于 2025-3-23 17:34:03 | 只看該作者
13#
發(fā)表于 2025-3-23 21:21:00 | 只看該作者
Water Politics and Development Cooperationof bilinear systems, the number of control impulses needed for the system to pass to a given point of the attainability set is estimated. Similar problems for dynamic systems with absolutely continuous trajectories has been studied in [25, 14, 108].
14#
發(fā)表于 2025-3-24 01:52:32 | 只看該作者
15#
發(fā)表于 2025-3-24 05:30:12 | 只看該作者
16#
發(fā)表于 2025-3-24 08:18:49 | 只看該作者
17#
發(fā)表于 2025-3-24 10:46:45 | 只看該作者
Water Politics and Development Cooperationhas been developed by J. I. Massera and J. J. Sch?ffer [63] and is based on Banach’s about inverse—transform theorem. This theorem is applied to maps establishing a correspondence between solutions with vanishing Cauchy data and additive perturbations. Another approach has been introduced by R.Bellm
18#
發(fā)表于 2025-3-24 18:35:10 | 只看該作者
Water Politics and Development Cooperation distributions to be distributional derivatives of functions of bounded variation. We concern a definition of solutions to ordinary differential equations in the space of functions of bounded variation. We define discontinuous solutions by means of closing the absolutely continuous solutions set. It
19#
發(fā)表于 2025-3-24 21:48:29 | 只看該作者
20#
發(fā)表于 2025-3-24 23:50:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 15:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鲁甸县| 阜城县| 江口县| 沿河| 烟台市| 防城港市| 阜阳市| 金昌市| 温州市| 靖边县| 襄垣县| 泰和县| 荔浦县| 衡阳县| 菏泽市| 霞浦县| 汤阴县| 梅州市| 万安县| 漳州市| 峡江县| 通州区| 吴桥县| 海林市| 客服| 庆阳市| 甘肃省| 菏泽市| 金华市| 云林县| 水富县| 建昌县| 武夷山市| 沙雅县| 招远市| 万宁市| 通海县| 乌审旗| 贡觉县| 简阳市| 蛟河市|