找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dyadic Walsh Analysis from 1924 Onwards Walsh-Gibbs-Butzer Dyadic Differentiation in Science Volume ; A Monograph Based on Radomir Stankovi

[復(fù)制鏈接]
樓主: Wilson
11#
發(fā)表于 2025-3-23 13:04:10 | 只看該作者
My Involvement with the Dyadic Derivative,study the paper [7] in which N. Ya. Vilenkin introduced these groups. This resulted in a series of papers, some of them with D. Waterman as co-author, in which various types of convergence of Vilenkin-Fourier series were discussed.
12#
發(fā)表于 2025-3-23 17:07:57 | 只看該作者
Hardy Spaces in the Theory of Dyadic Derivative,adic integral of a function .?∈?..[0, 1) is almost everywhere .. The theory of Hardy spaces can be well applied in harmonic analysis as well as in the theory of dyadic derivative (see e.g. [19, 24] and the references therein).
13#
發(fā)表于 2025-3-23 20:27:37 | 只看該作者
Fachsprachlichkeit — eine Frage des Wissensn 1909. Folklore has it that Hilbert, Haar’s advisor at G?ttingen University, asked Haar to find an orthogonal system on the interval [0,1) whose Fourier series of continuous functions converged uniformly. Haar’s clever solution was to restrict his attention to piecewise constant functions supported
14#
發(fā)表于 2025-3-23 23:45:48 | 只看該作者
15#
發(fā)表于 2025-3-24 02:57:49 | 只看該作者
Fachsprachlichkeit — eine Frage des Wissensing in 1970. First, major actors dealing with Walsh polynomials and Walsh-Fourier series world-wide are listed, together with various meetings and workshops concerned with these and with early dyadic analysis; Aachen members participated in many of them. Contrary to the original Gibbs “l(fā)ogical deriv
16#
發(fā)表于 2025-3-24 09:00:04 | 只看該作者
Fachsprachlichkeit — eine Frage des Wissensted to the fundamental theorem, right from the beginning. New concepts and techniques have emerged on which summaries can be found in the relevant chapters of the monographes [SchWadSim90], [Wei02]. In this survey paper we present the results on the fundamental theory of dyadic derivative, and their
17#
發(fā)表于 2025-3-24 14:31:39 | 只看該作者
18#
發(fā)表于 2025-3-24 18:40:45 | 只看該作者
19#
發(fā)表于 2025-3-24 22:38:44 | 只看該作者
20#
發(fā)表于 2025-3-25 00:34:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 22:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
许昌市| 尉犁县| 大丰市| 赤峰市| 安岳县| 五寨县| 德江县| 临桂县| 方正县| 大姚县| 柘荣县| 彭阳县| 临海市| 沙坪坝区| 厦门市| 太仆寺旗| 南木林县| 涟源市| 平塘县| 南平市| 大埔区| 柘城县| 石阡县| 崇信县| 宣武区| 朝阳市| 高台县| 仁怀市| 永靖县| 嘉义市| 灵丘县| 汉沽区| 通州区| 浪卡子县| 达州市| 丹凤县| 嘉峪关市| 雷波县| 工布江达县| 修武县| 新郑市|