找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Duality Principles in Nonconvex Systems; Theory, Methods and David Yang Gao Book 2000 Springer Science+Business Media Dordrecht 2000 Mathe

[復制鏈接]
樓主: 削木頭
21#
發(fā)表于 2025-3-25 05:49:12 | 只看該作者
Unicameral or Bicameral Parliaments them to illustrate a general duality theory for .-dimensional nonconvex finite deformation systems in which the geometrical mapping Λ is a nonlinear partial differential operator. The methods and ideas can certainly be generalized to many other problems.
22#
發(fā)表于 2025-3-25 10:02:28 | 只看該作者
23#
發(fā)表于 2025-3-25 14:08:54 | 只看該作者
https://doi.org/10.1007/978-1-4757-3176-7Mathematica; applied mathematics; deformation; dynamical systems; engineering mechanics; functional analy
24#
發(fā)表于 2025-3-25 18:07:30 | 只看該作者
25#
發(fā)表于 2025-3-25 22:21:51 | 只看該作者
26#
發(fā)表于 2025-3-26 02:41:47 | 只看該作者
27#
發(fā)表于 2025-3-26 04:27:47 | 只看該作者
Duality in Finite Deformation Systems them to illustrate a general duality theory for .-dimensional nonconvex finite deformation systems in which the geometrical mapping Λ is a nonlinear partial differential operator. The methods and ideas can certainly be generalized to many other problems.
28#
發(fā)表于 2025-3-26 12:02:28 | 只看該作者
29#
發(fā)表于 2025-3-26 12:59:11 | 只看該作者
Mono-Duality in Static Systemshematical physics and of discrete systems of networks. By introducing abstract notations, we are able to see unifying structures in the different theories. Through pure mathematical analysis, the intrinsic inner beauty in physical nature can be revealed.
30#
發(fā)表于 2025-3-26 18:22:51 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-20 13:04
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
隆子县| 富蕴县| 古交市| 闽侯县| 长白| 阿拉善右旗| 旬邑县| 青海省| 九龙城区| 井陉县| 怀安县| 大关县| 和平县| 迁西县| 衡南县| 高台县| 大田县| 嘉黎县| 分宜县| 新和县| 德兴市| 仙游县| 梓潼县| 康平县| 南阳市| 科技| 吴江市| 屏山县| 望都县| 扬中市| 临高县| 临漳县| 睢宁县| 孟州市| 衡水市| 平陆县| 密山市| 嵊泗县| 乌苏市| 潼关县| 清徐县|