找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Drop-Surface Interactions; Martin Rein Conference proceedings 2002 CISM Udine 2002 Engineering.Mechanics.Mechanics of Materials.Thermodyna

[復(fù)制鏈接]
樓主: 出租
11#
發(fā)表于 2025-3-23 12:17:43 | 只看該作者
,W?rme (Zufallsbewegte Teilchensysteme),A brief survey of several phenomena occurring when a liquid drop impacts the surface of a pool of the same liquid is presented. The review touches upon drop oscillations, liquid-liquid contact, sound emission, bubble entrapment, and vorticity generation.
12#
發(fā)表于 2025-3-23 16:14:11 | 只看該作者
13#
發(fā)表于 2025-3-23 21:36:19 | 只看該作者
14#
發(fā)表于 2025-3-24 01:16:31 | 只看該作者
15#
發(fā)表于 2025-3-24 02:39:24 | 只看該作者
Physico-Chemical Aspects of Forced WettingThis chapter deals with the drop-solid surface interaction when the drop liquid is a surface-active solution. The basic concepts of spontaneous wetting and of the static and dynamic surface properties of surface-active solutions are first recalled. Then, the influence of surfactants on forced wetting is addressed.
16#
發(fā)表于 2025-3-24 07:49:55 | 只看該作者
17#
發(fā)表于 2025-3-24 13:11:12 | 只看該作者
CISM International Centre for Mechanical Scienceshttp://image.papertrans.cn/e/image/282961.jpg
18#
發(fā)表于 2025-3-24 18:14:05 | 只看該作者
19#
發(fā)表于 2025-3-24 19:48:41 | 只看該作者
Boundary Integral Methods effects. This chapter focuses for the most part on the former case and provides an overview of several boundary integral methods that have been developed to handle it. The last section gives a brief description of the basis for boundary integral methods suitable for the Stokes equations.
20#
發(fā)表于 2025-3-25 01:02:42 | 只看該作者
Asymptotic Theory of Droplet Spreading After Collision With a Solid Surface height and radius of droplet consequently. The developed model describes the rim formation on the front of spreading droplet and oscillation of the droplet due to the dynamics edge angle. The offered theory has allowed calculating the frequency of droplet oscillation and the maximal radius of the splat.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 09:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新余市| 鹤岗市| 临桂县| 乐业县| 彰化县| 平舆县| 精河县| 金秀| 海兴县| 太湖县| 鄂伦春自治旗| 同仁县| 丰台区| 平利县| 云阳县| 花莲县| 龙州县| 于田县| 栾川县| 科尔| 高台县| 宁安市| 清水县| 涞水县| 阳谷县| 旺苍县| 洛南县| 临潭县| 留坝县| 收藏| 沅江市| 子长县| 朝阳区| 务川| 萨迦县| 元朗区| 建德市| 湟中县| 浏阳市| 隆安县| 东至县|