找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Driving Scientific and Engineering Discoveries Through the Convergence of HPC, Big Data and AI; 17th Smoky Mountains Jeffrey Nichols,Becky

[復(fù)制鏈接]
查看: 9762|回復(fù): 62
樓主
發(fā)表于 2025-3-21 19:19:21 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Driving Scientific and Engineering Discoveries Through the Convergence of HPC, Big Data and AI
副標(biāo)題17th Smoky Mountains
編輯Jeffrey Nichols,Becky Verastegui,Theresa Ahearn
視頻videohttp://file.papertrans.cn/283/282920/282920.mp4
叢書名稱Communications in Computer and Information Science
圖書封面Titlebook: Driving Scientific and Engineering Discoveries Through the Convergence of HPC, Big Data and AI; 17th Smoky Mountains Jeffrey Nichols,Becky
描述This book constitutes the revised selected papers of the 17th Smoky Mountains Computational Sciences and Engineering Conference, SMC 2020, held in Oak Ridge, TN, USA*, in August 2020..The 36 full papers and 1 short paper presented were carefully reviewed and selected from a total of 94 submissions. The papers are organized in topical sections of?computational applications: converged HPC and artificial intelligence; system software: data infrastructure and life cycle;?experimental/observational applications: use cases that drive requirements for AI and HPC convergence;?deploying computation: on the road to a converged ecosystem;?scientific data challenges..*The conference was held virtually due to the COVID-19 pandemic..
出版日期Conference proceedings 2020
關(guān)鍵詞artificial intelligence; cloud computing; computer hardware; computer networks; computer systems; compute
版次1
doihttps://doi.org/10.1007/978-3-030-63393-6
isbn_softcover978-3-030-63392-9
isbn_ebook978-3-030-63393-6Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Driving Scientific and Engineering Discoveries Through the Convergence of HPC, Big Data and AI影響因子(影響力)




書目名稱Driving Scientific and Engineering Discoveries Through the Convergence of HPC, Big Data and AI影響因子(影響力)學(xué)科排名




書目名稱Driving Scientific and Engineering Discoveries Through the Convergence of HPC, Big Data and AI網(wǎng)絡(luò)公開度




書目名稱Driving Scientific and Engineering Discoveries Through the Convergence of HPC, Big Data and AI網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Driving Scientific and Engineering Discoveries Through the Convergence of HPC, Big Data and AI被引頻次




書目名稱Driving Scientific and Engineering Discoveries Through the Convergence of HPC, Big Data and AI被引頻次學(xué)科排名




書目名稱Driving Scientific and Engineering Discoveries Through the Convergence of HPC, Big Data and AI年度引用




書目名稱Driving Scientific and Engineering Discoveries Through the Convergence of HPC, Big Data and AI年度引用學(xué)科排名




書目名稱Driving Scientific and Engineering Discoveries Through the Convergence of HPC, Big Data and AI讀者反饋




書目名稱Driving Scientific and Engineering Discoveries Through the Convergence of HPC, Big Data and AI讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:29:08 | 只看該作者
Large-Scale Neural Solvers for Partial Differential EquationsHowever, recent numerical solvers require manual discretization of the underlying equation as well as sophisticated, tailored code for distributed computing. Scanning the parameters of the underlying model significantly increases the runtime as the simulations have to be cold-started for each parame
板凳
發(fā)表于 2025-3-22 01:43:32 | 只看該作者
Integrating Deep Learning in Domain Sciences at Exascalerformance computing (HPC) simulations. We evaluate existing packages for their ability to run deep learning models and applications on large-scale HPC systems efficiently, identify challenges, and propose new asynchronous parallelization and optimization techniques for current large-scale heterogene
地板
發(fā)表于 2025-3-22 06:37:47 | 只看該作者
5#
發(fā)表于 2025-3-22 11:18:03 | 只看該作者
6#
發(fā)表于 2025-3-22 15:32:01 | 只看該作者
7#
發(fā)表于 2025-3-22 19:05:09 | 只看該作者
Fulfilling the Promises of Lossy Compression for Scientific Applicationssion has been identified as one solution and has been tested for many use-cases: reducing streaming intensity (instruments), reducing storage and memory footprints, accelerating computation and accelerating data access and transfer. Ultimately, users’ trust in lossy compression relies on the preserv
8#
發(fā)表于 2025-3-22 23:13:03 | 只看該作者
DataStates: Towards Lightweight Data Models for Deep Learningarge number of alternative training and/or inference paths. However, with increasing model complexity and new training approaches that mix data, model, pipeline and layer-wise parallelism, this pattern is challenging to address in a scalable and efficient manner. To this end, this position paper adv
9#
發(fā)表于 2025-3-23 02:26:26 | 只看該作者
10#
發(fā)表于 2025-3-23 08:25:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 15:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
札达县| 阜南县| 通辽市| 即墨市| 延川县| 奎屯市| 宜兴市| 时尚| 同江市| 芦山县| 鹤岗市| 仁寿县| 密云县| 嵊泗县| 抚州市| 宝丰县| 宜阳县| 宝坻区| 什邡市| 华蓥市| 佳木斯市| 调兵山市| 忻州市| 彰化县| 巴南区| 漯河市| 阿克苏市| 保靖县| 霍山县| 长武县| 蓬溪县| 准格尔旗| 锦屏县| 乐亭县| 绍兴市| 安宁市| 景东| 克什克腾旗| 会昌县| 花莲县| 平遥县|