找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Domains and Processes; Proceedings of the 1 Klaus Keimel,Guo-Qiang Zhang,Yi-Xang Chen Conference proceedings 2001 Kluwer Academic Publisher

[復(fù)制鏈接]
樓主: Awkward
31#
發(fā)表于 2025-3-26 22:04:43 | 只看該作者
U,-Admitting DCPOS Need not be Sober,. implies .?. for some . ? .. In this note, we construct an example of a ..-admitting dcpo which is not sober, thus giving a negative answer to an open problem posed by Heckmann in 1991. Moreover, we prove that for every locally compact dcpo, ..-admitting is equivalent to sober.
32#
發(fā)表于 2025-3-27 03:22:33 | 只看該作者
Normal Subsets in Abstract Bases,, the problem of definition and characterization of sub-domains in the category of continuous domains will be discussed. Then a dcpo class of abstract bases will be introduced and a fixed point theorem of continuous mappings on the class will be addressed. Finally, connections with other approaches to domain equations will be discussed briefly.
33#
發(fā)表于 2025-3-27 05:26:56 | 只看該作者
34#
發(fā)表于 2025-3-27 12:00:13 | 只看該作者
https://doi.org/10.1007/978-3-322-81404-3In this paper continuity for abstract semantics defined for lattices is generalized to the case of bc-domains, an equivalent characterization for semantics being continuous is given. Relation between continuity and compactness is given. Finally, application to fuzzy logic is discussed.
35#
發(fā)表于 2025-3-27 14:32:13 | 只看該作者
The Lawson Topology on Quasicontinuous Domains,For a directed complete poset ., let λ(.) and σ(.) be the lower topology and the Lawson topology on . respectively. We constructively prove that if . is a quasicontinuous domain and all lower closed subsets in (., λ(.)) are closed in (., ω(.)),then (.,λ(P)) is strictly completely regular ordered space.
36#
發(fā)表于 2025-3-27 20:01:53 | 只看該作者
Compact Semantics on BC-Domains,In this paper continuity for abstract semantics defined for lattices is generalized to the case of bc-domains, an equivalent characterization for semantics being continuous is given. Relation between continuity and compactness is given. Finally, application to fuzzy logic is discussed.
37#
發(fā)表于 2025-3-28 01:12:58 | 只看該作者
https://doi.org/10.1007/978-94-010-0654-5C programming language; Equivalence; computability; logic; proof; semantics
38#
發(fā)表于 2025-3-28 03:33:51 | 只看該作者
39#
發(fā)表于 2025-3-28 07:53:12 | 只看該作者
40#
發(fā)表于 2025-3-28 14:25:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 01:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泾源县| 隆子县| 泊头市| 安宁市| 通许县| 正定县| 宁波市| 富宁县| 边坝县| 乌鲁木齐县| 从江县| 清远市| 扬中市| 和政县| 南岸区| 新竹市| 肥西县| 澄城县| 碌曲县| 双流县| 梁山县| 安福县| 绥中县| 翁牛特旗| 梅河口市| 金平| 鲜城| 黄梅县| 建水县| 湘西| 页游| 岢岚县| 双鸭山市| 商丘市| 綦江县| 化隆| 三原县| 香格里拉县| 天津市| 金门县| 长宁区|