找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Domain Theory, Logic and Computation; Proceedings of the 2 G Q Zhang,J. Lawson,M.-K. Luo Conference proceedings 2003 Springer Science+Busin

[復制鏈接]
樓主: lumbar-puncture
31#
發(fā)表于 2025-3-26 23:39:26 | 只看該作者
Raquel Pastor Pastor,Henrik Legind Larsentational semantics. The purpose of the paper is to provide a gentle introduction to these notions, and to advocate a particular point of view which makes significant use of them. The main ideas here are not new, though our expository slant is somewhat novel, and some of our examples lead to seemingl
32#
發(fā)表于 2025-3-27 02:01:25 | 只看該作者
https://doi.org/10.1007/978-3-319-53160-1them and we identify in convergence terms when a convergence space coincides with a convergence class. We examine the basic operators in the Vienna Development Method of formal systems development, namely, extension, glueing, restriction, removal and override, from the perspective of the Logic for C
33#
發(fā)表于 2025-3-27 08:07:08 | 只看該作者
Joakim Holmlund,Bj?rn Nilsson,Johan R?nnbythe Scott topology simply as cl. (↓. ∩ ↓.) = ↓. whenever . ≤ ∨ .. Since the meet operator is not involved, the topological property of meet-continuity can be naturally extended to general dcpos. Such dcpos are also called meet-continuous in this note. It turns out that there exist close relations am
34#
發(fā)表于 2025-3-27 10:34:12 | 只看該作者
35#
發(fā)表于 2025-3-27 14:26:58 | 只看該作者
Roland Bloch,Alexander Mitterle,Tobias Peter in this paper. It is proved that the regular projective quantales are weakly multiplication-stable completely distributive lattices and multiplication-stable completely distributive lattices are regular projective quantales. For the class . of all onto quantale homomorphisms whose right adjoints pr
36#
發(fā)表于 2025-3-27 18:53:52 | 只看該作者
37#
發(fā)表于 2025-3-28 00:19:39 | 只看該作者
38#
發(fā)表于 2025-3-28 02:36:32 | 只看該作者
39#
發(fā)表于 2025-3-28 06:41:26 | 只看該作者
40#
發(fā)表于 2025-3-28 12:21:43 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-24 17:44
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
措美县| 古田县| 平和县| 江津市| 祁东县| 清涧县| 二连浩特市| 汶川县| 固原市| 额济纳旗| 江口县| 贵南县| 陇南市| 焦作市| 萍乡市| 日土县| 光泽县| 怀宁县| 柳林县| 旬阳县| 保山市| 拉萨市| 凤冈县| 陈巴尔虎旗| 东方市| 北碚区| 班戈县| 项城市| 临沭县| 恭城| 台州市| 河北省| 探索| 朝阳县| 阿瓦提县| 甘肃省| 合江县| 崇义县| 海林市| 全南县| 徐闻县|