找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Domain Generalization with Machine Learning in the NOvA Experiment; Andrew T.C. Sutton Book 2023 The Editor(s) (if applicable) and The Aut

[復制鏈接]
查看: 45840|回復: 41
樓主
發(fā)表于 2025-3-21 16:10:02 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Domain Generalization with Machine Learning in the NOvA Experiment
編輯Andrew T.C. Sutton
視頻videohttp://file.papertrans.cn/283/282507/282507.mp4
概述Nominated as an outstanding thesis by the University of Virginia, USA.Reviews the history and physics of the neutrino.Shows how domain generalization can reduce the impact of uncertainties in HEP expe
叢書名稱Springer Theses
圖書封面Titlebook: Domain Generalization with Machine Learning in the NOvA Experiment;  Andrew T.C. Sutton Book 2023 The Editor(s) (if applicable) and The Aut
描述.This thesis presents significant advances in the use of neural networks to study the properties of neutrinos. Machine learning tools like neural networks (NN) can be used to identify the particle types or determine their energies in detectors such as those used in the NOvA neutrino experiment, which studies changes in a beam of neutrinos as it propagates approximately 800 km through the earth. NOvA relies heavily on simulations of the physics processes and the detector response; these simulations work well, but do not match the real experiment perfectly.?Thus, neural networks trained on simulated datasets?must include?systematic uncertainties that account for?possible imperfections in the simulation.?This thesis presents the first application in HEP of adversarial domain generalization to a regression neural network. Applying domain generalization to problems with large systematic variations will reduce the impact of uncertainties while avoiding the risk offalsely constraining the phase space. Reducing the impact of systematic uncertainties makes NOvA analysis more robust, and improves the significance of experimental results..
出版日期Book 2023
關(guān)鍵詞Event reconstruction; Particle identification; Physics beyond the Standard Model; 3-flavor analysis; NOv
版次1
doihttps://doi.org/10.1007/978-3-031-43583-6
isbn_softcover978-3-031-43585-0
isbn_ebook978-3-031-43583-6Series ISSN 2190-5053 Series E-ISSN 2190-5061
issn_series 2190-5053
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Domain Generalization with Machine Learning in the NOvA Experiment影響因子(影響力)




書目名稱Domain Generalization with Machine Learning in the NOvA Experiment影響因子(影響力)學科排名




書目名稱Domain Generalization with Machine Learning in the NOvA Experiment網(wǎng)絡公開度




書目名稱Domain Generalization with Machine Learning in the NOvA Experiment網(wǎng)絡公開度學科排名




書目名稱Domain Generalization with Machine Learning in the NOvA Experiment被引頻次




書目名稱Domain Generalization with Machine Learning in the NOvA Experiment被引頻次學科排名




書目名稱Domain Generalization with Machine Learning in the NOvA Experiment年度引用




書目名稱Domain Generalization with Machine Learning in the NOvA Experiment年度引用學科排名




書目名稱Domain Generalization with Machine Learning in the NOvA Experiment讀者反饋




書目名稱Domain Generalization with Machine Learning in the NOvA Experiment讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:51:29 | 只看該作者
A Review of Neutrino Physics,ystematically and unify them in a manner that obeys mathematical restrictions motivated by physical observations. From those theories we can model complex interactions and understand one of the most interesting puzzles that neutrinos have to offer: neutrino oscillations or the sponatneuous transitio
板凳
發(fā)表于 2025-3-22 04:14:35 | 只看該作者
地板
發(fā)表于 2025-3-22 06:04:36 | 只看該作者
5#
發(fā)表于 2025-3-22 12:23:24 | 只看該作者
The 3-Flavor Analysis,ned neutrino oscillation parameters: ., ., and .. A number of selection criteria are applied in order to isolate high-purity ., .), ., and .) samples in both the Near and Far detectors. We use the Near Detector to predict what we expect to see at the Far Detector under the various combinations of th
6#
發(fā)表于 2025-3-22 13:03:06 | 只看該作者
A Long Short-Term Memory Neural Network,accurate estimation of the energies of the outgoing particles from a neutrino interaction is crucial. In the standard NOvA analysis a simple energy estimator is used for the . interactions where the muon energy is determined by the length of its track and the energy of the hadronic system is estimat
7#
發(fā)表于 2025-3-22 20:47:55 | 只看該作者
Domain Generalization by Adversarial Training,y simulation is inherently an imperfect representation of the real physical processes that these networks are meant to target. In the jargon of machine learning, we are training networks on one domain and then applying them to another. When we do this, it can be beneficial to “generalize” or “adapt”
8#
發(fā)表于 2025-3-22 21:38:29 | 只看該作者
9#
發(fā)表于 2025-3-23 01:25:11 | 只看該作者
10#
發(fā)表于 2025-3-23 07:18:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 14:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
白山市| 阿拉善右旗| 广河县| 青州市| 绥棱县| 贵南县| 铁岭县| 崇义县| 贵州省| 繁峙县| 长泰县| 德清县| 鸡西市| 杭州市| 山阴县| 宝山区| 平泉县| 改则县| 乐清市| 宝丰县| 原平市| 即墨市| 威远县| 商城县| 天长市| 马关县| 措美县| 阳原县| 民县| 香格里拉县| 姚安县| 余干县| 抚宁县| 七台河市| 宁德市| 宁乡县| 武冈市| 眉山市| 渑池县| 共和县| 柳江县|